Issue 12, 2001

Electrode modification and the response of the acoustic shear wave device operating in liquids

Abstract

The effect of electrode polarity, geometry, and stray capacitance on the performance of the thickness-shear mode acoustic wave sensor operating in electrolytes and solutions of biomolecules has been studied. In contrast to the well-known mass-based response of the device operating in the gas phase, the response in a liquid is governed by several factors including acoustoelectric and fringing field effects, which are known to be active at the edges of the electrodes. In order to investigate and utilize these effects, we modified the electrode geometry to increase the edge length, which, in turn, raises the sensitivity of the device. These changes which constituted either complete coverage of the back of the device with electrode material, or the removal of disks and lines from the electrode surface, resulted in a two to three times enhancement of sensor response. Such modifications that extend device sensitivity beyond the electrode area to the quartz region of the sensing structure also provide a better surface for the immobilization of various probes. We verified the enhancing ability of the modified electrodes for the case of adsorption of the protein avidin and neutravidin, followed by their affinity reactions with biotinylated biomolecules. It was found that the active electrode in contact with electrolyte exhibits a sensitivity of about twice that of the grounded electrode. The existence of stray capacitance around the cell was confirmed by shielding the cell assembly with a bath of concentrated KCl solution. This shielding effect was measured to be about 25–60 Hz in series resonant frequency and −1000 Hz in parallel resonant frequency.

Article information

Article type
Paper
Submitted
28 Aug 2001
Accepted
24 Sep 2001
First published
08 Nov 2001

Analyst, 2001,126, 2159-2167

Electrode modification and the response of the acoustic shear wave device operating in liquids

S. Ghafouri and M. Thompson, Analyst, 2001, 126, 2159 DOI: 10.1039/B107735J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements