Issue 6, 2001

Thin layer molecularly imprinted microfiltration membranes by photofunctionalization using a coated α-cleavage photoinitiator

Abstract

A novel approach towards thin-layer molecularly imprinted polymer (MIP) composite membranes was developed based on using benzoin ethyl ether (BEE), a very efficient α-scission photoinitiator. The triazine herbicide desmetryn was used as the template, and a mixture of the functional monomer 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) and the cross-linker N,N′-methylene-bis-acrylamide (MBAA) in methanol was copolymerised via photoinitiation followed by deposition on the surface of either hydrophobic or hydrophilically precoated polyvinylidene fluoride (PVDF) microfiltration membranes. Blanks were prepared under identical conditions, but without the template. Especially, the degree of functionalization (DF) of the PVDF membranes with poly(AMPS-co-MBAA), the membrane permeabilities and non-specific vs. MIP-specific template binding from aqueous solutions during fast filtration were studied in detail to evaluate the effects of the preparation conditions, in particular the coating of the membrane surface with the photoinitiator prior to UV irradiation and the influence of the precoated hydrophilic layer on PVDF. Significant template specificities of the MIP membranes compared with the blanks were only achieved for the preparations including coating the two types of PVDF membranes with BEE. In contrast, a homogeneous photoinitiation of the copolymerisation in the membrane pore volume yielded functional layers with similar DF but with only non-specific desmetryn binding. All data clearly indicate the significant contribution of MIP stabilization by the support material in layers of optimum thickness to the MIP specificity. Main advantages of the novel approach are the potential to synthesize MIP composite membranes by controlled deposition onto any kind of polymer support, and the very fast MIP preparations due to a very efficient photoinitiator and small MIP layer thickness. Due to the mechanical and chemical stability in combination with high permeabilities, thin-layerMIP composite membranes have a large application potential, e.g., in solid phase extraction.

Article information

Article type
Paper
Submitted
14 Dec 2000
Accepted
18 Apr 2001
First published
23 May 2001

Analyst, 2001,126, 803-809

Thin layer molecularly imprinted microfiltration membranes by photofunctionalization using a coated α-cleavage photoinitiator

V. Kochkodan, W. Weigel and M. Ulbricht, Analyst, 2001, 126, 803 DOI: 10.1039/B009992I

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements