Issue 4, 2000

Abstract

Performance characteristics of inductively coupled plasma sector field mass spectrometry (ICP-SFMS) were studied with a Pt guard electrode (GE) inserted between the torch and load coil. The importance of the optimisation procedure and the matrix effects caused by a seawater matrix were assessed for 20 elements. Oxide and doubly charged ion formation was also investigated. Use of the GE allows a significant increase in ion transmission, by a factor of three to 20, thus resulting in improved instrumental detection limits. The improvement in sensitivity is mass dependent, with the highest gain observed for lower mass elements. Since, for the majority of analytical applications, actual detection limits depend upon blank levels rather on instrumental sensitivity, the most important factor for the determination of elements at ultra-trace levels is the degree of contamination of reagents and containers used. At the same time, significantly greater oxide formation is observed when operating the GE grounded rather than in the floating mode. For example, the BaO+/Ba+ ratio is ten to twelve times higher in the grounded mode. This calls for compromised instrumental parameters and the potential for severe spectral interferences from oxide species, which are often unresolved, even in high-resolution mode. Furthermore, non-spectral interferences from the seawater matrix appear to be more pronounced with the grounded GE, yielding a recovery of Ni of 55% compared with 93% in the floating GE mode. Hence all possible advantages and limitations of the use of the GE should be carefully considered prior to the analysis of real samples.

Article information

Article type
Paper
Submitted
11 Aug 1999
Accepted
21 Oct 1999
First published
16 Feb 2000

J. Anal. At. Spectrom., 2000,15, 359-364

The use of Pt guard electrode in inductively coupled plasma sector field mass spectrometry: advantages and limitations

P. K. Appelblad, I. Rodushkin and D. C. Baxter, J. Anal. At. Spectrom., 2000, 15, 359 DOI: 10.1039/A906531H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements