Issue 4, 2000

Abstract

The α-oxocarboxylates (α-ketocarboxylates) and the corresponding α-oxoacids (α-ketoacids) have been reported as disinfection byproducts of ozonation of potable water supplies. In this analytical method, the oxo moiety is derivatized with O-(2,3,4,5,6-pentafluorobenzyl)oxylamine (PFBOA) to form an oxime which is then extracted into tert-butyl methyl ether. The carboxylic acid moiety is esterified (methylated) with diazomethane. In this study, five analytes were investigated: oxoethanoate (glyoxylate), 2-oxopropanoate (pyruvate), 2-oxobutanoate (2-ketobutyrate), 2-oxopentanoate (2-ketovalerate), and oxopropanedioate (ketomalonate, mesoxalate). The influence of Lewis acid metal cations in the water matrix was evaluated for the gas chromatographic method commonly used for the quantitation of these analytes at concentrations ≤150 ng mL−1. Tested metals included Ca(II), Mg(II), Fe(III), Cu(II) and Zn(II). At typical concentrations, calcium, in particular, can have profound impact, especially on oxoethanoate quantitation. Oxopropanoate experiences an increase in recovery in the presence of metal cations. 2-Oxobutanoate and 2-oxopentanoate are the most resistant to these effects, but 2-oxopentanoate shows increased recoveries at higher concentrations when assayed in the presence of calcium ion. Oxopropanedioate generally shows poorer precision and recovery when determined in solutions containing metal ions. This investigation demonstrates the significance of metal effects in the quantitative determination of these analytes and further emphasizes the importance of thorough matrix characterization and careful recovery studies with fortified (spiked) samples and blanks.

Article information

Article type
Paper
Submitted
17 Apr 2000
Accepted
09 May 2000
First published
09 Jun 2000

J. Environ. Monit., 2000,2, 334-338

Influences of metal cations on the determination of the α-oxocarboxylates as the methyl esters of the O-(2,3,4,5,6-pentafluorobenzyl)oximes by gas chromatography: the importance of accounting for matrix effects

E. T. Urbansky, J. Environ. Monit., 2000, 2, 334 DOI: 10.1039/B003065L

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements