Issue 8, 2000

Cation-directed syntheses of novel zeolite-like metalloaluminophosphates STA-6 and STA-7 in the presence of azamacrocycle templates

Abstract

Hydrothermal syntheses of divalent metal cation-containing aluminophosphates, or MAPOs (M = Mg, Mn, Fe, Co or Zn), have been performed using the azamacrocycle 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane as a structure directing agent. Whereas STA-6 (St. Andrews-6), a small pore zeotype with a one-dimensional channel system, is prepared when magnesium, manganese or iron is included in the synthesis gel, a new solid, STA-7, is prepared in the presence of cobalt or zinc. The structure of STA-7 has been solved and found to possess a tetrahedrally connected framework with a fully three-dimensional interconnected small pore channel system. The organic template molecules included during synthesis can completely be removed without loss of framework integrity from the cobalt form. Syntheses using the hexaazamacrocycle 1,4,7,10,13,16-hexamethyl-1,4,7,10,13,16-hexaazacyclooctadecane have also been successful in preparing STA-7 in the presence of divalent metal cations. Both STA-6 and STA-7 structure types can be considered to be built up of cages and chemical analysis and computer simulation suggest strongly that the macrocycles act to template these cages.

Supplementary files

Article information

Article type
Paper
Submitted
23 Nov 1999
Accepted
13 Mar 2000
First published
30 Mar 2000

J. Chem. Soc., Dalton Trans., 2000, 1243-1248

Cation-directed syntheses of novel zeolite-like metalloaluminophosphates STA-6 and STA-7 in the presence of azamacrocycle templates

P. A. Wright, M. J. Maple, A. M. Z. Slawin, V. Patinec, R. A. Aitken, S. Welsh and P. A. Cox, J. Chem. Soc., Dalton Trans., 2000, 1243 DOI: 10.1039/A909249H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements