Issue 14, 2000

Molecular modeling of water adsorption on hematite

Abstract

This paper describes the results of modeling the surface hydration configurations formed when different planes of the hematite crystal were exposed to water using empirically derived potentials able to replicate the hematite, goethite and lepidocrocite structures to within 2% of their measured values. The planes chosen were the {111}, {011} and {210} planes expressed in rhombohedral coordinates. It was found that of all the surfaces studied there was a preference for hydration on the O-terminated basal {111} plane. This plane had the lowest hydrated surface energy and it was also the most stabilised by reaction with water. The Fe-terminated {111} plane was found to be unstable in the presence of excess water ([gt-or-equal]67% coverage). The surface iron atoms relax away from the simulation cell to leave the O-terminated hydrated layer behind. Chemisorption may be energetically feasible at low surface coverages (<67% coverage). The {011} plane of hematite showed a preference for 100% water coverage (full coordination of the surface iron atoms). The surface energy of adsorbing water on this plane was lower than for the {210} plane particularly at high water coverages. The {210} plane was not stabilised by reaction with water at any coverage. The surfaces underwent relaxations depending on the water coverage. Large relaxations were observed at lower coverages for the {011} plane while the largest relaxations were observed at higher coverages on the {210} plane.

Article information

Article type
Paper
Submitted
27 Apr 2000
Accepted
30 May 2000
First published
26 Jun 2000

Phys. Chem. Chem. Phys., 2000,2, 3209-3216

Molecular modeling of water adsorption on hematite

F. Jones, A. L. Rohl, J. B. Farrow and W. van Bronswijk, Phys. Chem. Chem. Phys., 2000, 2, 3209 DOI: 10.1039/B003380O

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements