T–O–T skeletal vibration in CuZSM-5 zeolite: IR study and quantum chemical modeling
Abstract
The location of Cu cations in CuZSM-5, properties of cationic sites and their interaction with guest molecules have been studied by quantum chemical (DFT) modeling and IR spectroscopy based on the frequency shift of antisymmetric T–O–T vibration of oxygen rings. The shift has been found sensitive both to the framework interaction with cations and to the interaction with adsorbed molecules. It has been measured and estimated theoretically from parameters characterising framework distorsion by Cu+ and Cu2+, with MgZSM-5 and NaZSM-5 used as ‘‘reference samples’’. It was found that the ordering of the cation perturbing effect was: Na+<Cu+<Mg2+<Cu2+. NO interaction with Cu cations was much stronger than that of CO and N2 . Divalent copper showed polarized 2-electron covalent bonding with NO strengthening its bond while moderate bonding ability of monovalent copper led to NO bond activation, in accordance with high catalytic activity of Cu+ZSM-5.
Please wait while we load your content...