Issue 10, 2000

Temperature and humidity compensation in the determination of solvent vapors with a microsensor system

Abstract

Accounting for changes in temperature and ambient humidity is critical to the development of practical field vapor-monitoring instrumentation employing microfabricated sensor arrays. In this study, responses to six organic vapors were collected from two prototype field instruments over a range of ambient temperatures and relative humidities (RH). Each instrument contains an array of three unthermostated polymer-coated surface acoustic wave (SAW) resonators, a thermally desorbed adsorbent preconcentrator bed, a reversible pump and a small scrubber cartridge. Negligible changes in the vapor sensitivities with atmospheric RH were observed owing, in large part, to the temporal separation of co-adsorbed water from the organic vapor analytes upon thermal desorption of preconcentrated air samples. As a result, calibrations performed at one RH level could be used to determine vapors at any other RH without corrections using standard pattern recognition methods. Negative exponential temperature dependences that agreed reasonably well with those predicted from theory were observed for many of the vapor–sensor combinations. It was possible to select a subset of sensors with structurally diverse polymer coatings whose sensitivities to all six test vapors and selected binary vapor mixtures had similar temperature dependences. Thus, vapor recognition could be rendered independent of temperature and vapor quantification could be corrected for temperature with sufficient accuracy for most applications. The results indicate that active temperature control is not necessary and that temperature and RH compensation is achievable with a relatively simple microsensor system.

Article information

Article type
Paper
Submitted
06 Jun 2000
Accepted
08 Aug 2000
First published
22 Sep 2000

Analyst, 2000,125, 1775-1782

Temperature and humidity compensation in the determination of solvent vapors with a microsensor system

J. Park and E. T. Zellers, Analyst, 2000, 125, 1775 DOI: 10.1039/B004528O

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements