Issue 3, 2000

Sorption of volatile organics from water using an open-tubular, wall-coated capillary column

Abstract

Passing an aqueous solution containing volatile organic compounds through a gas chromatography (GC) capillary column allows the extraction of the organic components onto the column stationary phase. If a sufficient volume of the aqueous solution passes through the capillary, the extraction reaches equilibrium. Studies using BTEX (benzene, toluene, ethylbenzene, xylene compounds) in water, with collection and GC-flame ionization detection analysis of 100 μL fractions of the aqueous solution collected from the capillary, enables a sorption profile to be generated. Boltzmann curves may be fitted to the sorption profile data and mathematical integration of the curves allows the estimation of the amount of solute sorbed by the capillary column. The extent or amount of the extraction is found to depend on parameters such as: the phase ratio of the stationary phase coated on the inner wall of the capillary; the extraction temperature; the linear velocity of the aqueous solution through the capillary; the total volume of the sorbing phase; and the original concentration of organic in water before extraction. Stationary phase type will also play a role in the extraction. Variation of the experimental factors, using BTEX extraction as a model system, allowed the derivation of an empirical equation to describe the extraction performance. With this equation it is possible to predict the minimum volume required to be passed through different types of capillary for different solutes to ensure equilibrium extraction. This volume corresponds to the onset of 100% breakthrough. Phenols were used to validate the approach using a polar capillary stationary phase. Experimental data agreed with predictions.

Article information

Article type
Paper
Submitted
10 Sep 1999
Accepted
13 Jan 2000
First published
23 Feb 2000

Analyst, 2000,125, 469-475

Sorption of volatile organics from water using an open-tubular, wall-coated capillary column

B. C. D. Tan, P. J. Marriott, H. K. Lee and P. D. Morrison, Analyst, 2000, 125, 469 DOI: 10.1039/A907348E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements