Issue 3, 2000

Bioavailability studies of oral dosage forms containing levodopa and carbidopa using column-switching chromatography followed by electrochemical detectionPresented at SAC 99, Dublin, Ireland, July 25–30, 1999.

Abstract

A reliable multi-dimensional column chromatographic method employing amperometric detection using a carbon fibre microelectrode procedure was used for monitoring the plasma profiles and to evaluate the pharmacokinetics and bioavailability of levodopa (L-dopa) and carbidopa (C-dopa), after ingestion of oral formulations containing these drugs. The peak currents obtained for the different analytes were directly proportional to the analyte over the concentration range 0.02–4 μg ml−1. Using this method, the minimum detectable concentration was estimated to be 5 and 8 ng ml−1 for L-dopa and C-dopa, respectively. Recovery studies ranged from 93.83 to 89.76%, with a relative standard deviation of less than 7%. The study was carried out in two separate weeks on five healthy non-patient fasted male/female volunteers in the age range 20–37 years and weighing between 60 kg and 78 kg. The pharmacokinetic profile of two controlled-release products containing both L-dopa and C-dopa (Sinemet CR3 and CR4) was compared on the one hand and Sinemet conventional tablets on the other. The pharmacokinetic parameters, peak concentration (Cmax), the time taken to obtain this level (Tmax), elimination half-time T1/2, elimination rate constant (Kel), plasma level ratio, fluctuation index (FI) and the area under the time–concentration curve (AUC0–8), were investigated for each individual formulation. A comparison of the uptake of L-dopa from the conventional formulation showed that L-dopa entered the plasma and achieved peak levels higher than that of the controlled release formulations. However, it showed a much higher fluctuation index and the plasma concentrations were more stable with the controlled release formulations. The data also indicated a very low accumulation of both levodopa and carbidopa following repeated administration of the drugs, which was consistent with their relatively short half-lives (less than 2 h). In contrast, the half-life for the metabolite 3-orthomethyl dopa (3-OMD) is in the order of 13 h. As a result, there was an extensive accumulation of 3-OMD and its levels were significantly higher than those of levodopa or carbidopa upon repeated administration. Urine recoveries of the three analytes over one 8 h dosing interval showed that the majority of the excreted levodopa and carbidopa was recovered during the first 4 h, and there is proportionally greater excretion of the carbidopa dose than the levodopa dose.

Article information

Article type
Paper
Submitted
04 Aug 1999
Accepted
07 Jan 2000
First published
23 Feb 2000

Analyst, 2000,125, 439-445

Bioavailability studies of oral dosage forms containing levodopa and carbidopa using column-switching chromatography followed by electrochemical detection

K. A. Sagar and M. R. Smyth, Analyst, 2000, 125, 439 DOI: 10.1039/A906364A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements