Issue 8, 1999

Thiophene-2,5-dicarboxylic acid incorporated self-assembly of one-, two- and three-dimensional coordination polymers

Abstract

Six thiophene-2,5-dicarboxylic acid incorporated and self-assembled zinc(II), cobalt(II) and manganese(II) coordination polymers [Zn(Tda)(py)]n (1), [Zn(Tda)(bipy)(H2O)·1.5H2O]n (2), [Zn(Tda)(phen)(H2O)]n (3), [Co(Tda)(phen)(H2O)]n (4), [Mn(Tda)(phen)]n (5) and [Mn(Tda)(H2O)2]n (6) have been synthesised and structurally characterised. Complex 1 is characterised as a two-dimensional parallelogram with a cavity of about 10.4×10.4 Å, while complexes 2 and 3 (4) are one-dimensional linear and zig-zag coordination polymers with mainly hydrogen-bonding and stacking interactions contributing to their crystal packing, respectively. Complex 5 is a two-dimensional porous sheet with alternating 16- and 8-membered rings, while complex 6 is a three-dimensional porous coordination polymer. The diverse coordination properties of thiophene-2,5-dicarboxylate make it a good building block for the construction of coordination polymers of different architectures, which are dependent on both the end-capping ligand and the coordination geometry of the metal ions. Physical and thermal properties of these complexes have also been studied.

Supplementary files

Article information

Article type
Paper

New J. Chem., 1999,23, 877-883

Thiophene-2,5-dicarboxylic acid incorporated self-assembly of one-, two- and three-dimensional coordination polymers

B. Chen, K. Mok, S. Ng and M. G. B. Drew, New J. Chem., 1999, 23, 877 DOI: 10.1039/A901688K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements