Issue 12, 1999

Structural investigation of oxygen insertion within the Ce2Sn2O7–Ce2Sn2O8 pyrochlore solid solution by means of in situ neutron diffraction experiments

Abstract

The amazing oxygen exchange properties within the Ce2Sn2O7–Ce2Sn2O8 pyrochlore solid solution were investigated by means of in situ neutron diffraction experiments. The structural modification of the Ce2Sn2O7 phase heated under oxygen up to 1000 °C was followed on the basis of the neutron diffraction patterns, continuously collected with a 5 min counting rate at 2.529 Å. The structure of the Ce2Sn2O8 pyrochlore phase has been previously determined at room temperature on the basis of the powder neutron diffraction pattern collected at 1.594 Å. Contrary to the oxygen-intercalated zirconate pyrochlores, oxygen atoms preferentially occupy a 32e crystallographic site, which is more distant from the Sn4+ cation than the other interstitial 8a site. Two kinds of local oxygen defects were identified within the Ce2Sn2O8 – ε (0 ≤ ε ≤ 0.05) pyrochlore at 400 °C. The most stable is a tetrahedron of oxygen atoms (32e site) around an oxygen vacancy (8b site), comparable to the Willis clusters found in UO2 + x. The other, lying around the 8a site, involves short oxygen–oxygen distances and constitutes a new type of oxygen cluster around tin atoms. In addition to the successive disappearance of these local defects from 400 °C to 700 °C, cerium deinsertion was detected above 500 °C. This leads to new cerium deficient Ce2 – xSn2Oy phases, which exhibit structural changes. The oxygen storage capacity (OSC) of the Ce2Sn2O7 pyrochlore was thus detailed by considering the successive insertion/deinsertion reactions and the Ce–Sn–O phase diagram.

Article information

Article type
Paper

J. Mater. Chem., 1999,9, 3131-3136

Structural investigation of oxygen insertion within the Ce2Sn2O7–Ce2Sn2O8 pyrochlore solid solution by means of in situ neutron diffraction experiments

B. Tolla, A. Demourgues, O. Isnard, M. Menetrier, M. Pouchard, L. Rabardel and T. Seguelong, J. Mater. Chem., 1999, 9, 3131 DOI: 10.1039/A905914H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements