Issue 9, 1999

An alternating copolymer consisting of light emitting and electron transporting units

Abstract

An alternating copolymer composed of fluorenedivinylene as the light emitting unit and pyridine as the electron transporting one was synthesized by employing the Wittig reaction. The copolymer which has conjugation throughout the molecular chain is soluble in both polar and nonpolar solvents. The copolymer has a band gap energy of 2.85 eV deduced from an ultraviolet-visible absorption spectrum, and ionization potential and electron affinity of –5.67 and –2.82 eV, respectively, deduced from a cyclic voltammogram. The photoluminescence (PL) emission maximum was observed at 440 or 540 nm depending on the solvent used in making the solution for spin-casting. The copolymer was also capable of transporting electrons and could be used as an electron transporting layer. A light emitting diode (LED) fabricated with a blend of polyvinylcarbazole (PVK) with a fluorene-based light emitting material, and this copolymer as an electron transporting layer, exhibited an electroluminescence (EL) emission maximum at 475 nm with a full width at the half maximum (FWHM) of 50 nm and a quantum efficiency of 0.1%, where indium tin oxide (ITO) and Al were used as the anode and cathode, respectively.

Article information

Article type
Paper

J. Mater. Chem., 1999,9, 2171-2176

An alternating copolymer consisting of light emitting and electron transporting units

J. Kyeong Kim, J. Woong Yu, J. Min Hong, H. Nam Cho, D. Young Kim and C. Yup Kim, J. Mater. Chem., 1999, 9, 2171 DOI: 10.1039/A902744K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements