Issue 13, 1999

Abinitio potential-energy functions for excited state intramolecular proton transfer: a comparative study of o-hydroxybenzaldehyde, salicylic acid and 7-hydroxy-1-indanone

Abstract

Potential-energy profiles along the minimum-energy reaction path for intramolecular proton transfer in the 1ππ* excited state have been calculated for the title compounds. The CASSCF and CIS electronic-structure methods have been employed for excited-state geometry optimization. Single-point energy calculations along the reaction path have been performed using the CASPT2 and TDDFT methods. The TDDFT method has been tested against accurate CASSCF and CASPT2 data for malonaldehyde. CASPT2 yields transition energies for photon absorption and emission which are in excellent agreement with experimental data (within 0.2 eV). The CASPT2 potential energy functions exhibit, however, artifactual kinks (on a scale of a single kcal mol-1) which reflect inherent limitations of the CASSCF-based perturbation approach. TDDFT yields potential-energy functions which are essentially parallel to the CASPT2 functions and free of artifacts. Transition energies for absorption and emission are systematically overestimated, however, by about 0.5 eV in TDDFT. For all three title compounds, a barrierless 1ππ* potential-energy function is predicted. The location of the 1ππ* minimum varies from near-enol in salicylic acid to near-keto in 7-hydroxy-1-indanone.

Article information

Article type
Paper

Phys. Chem. Chem. Phys., 1999,1, 3065-3072

Ab initio potential-energy functions for excited state intramolecular proton transfer: a comparative study of o-hydroxybenzaldehyde, salicylic acid and 7-hydroxy-1-indanone

A. L. Sobolewski and W. Domcke, Phys. Chem. Chem. Phys., 1999, 1, 3065 DOI: 10.1039/A902565K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements