Issue 6, 1999

Semiclassical calculation of cumulative reaction probabilities

Abstract

Calculation of chemical reaction rates lies at the very core of theoretical chemistry. The essential dynamical quantity which determines the reaction rate is the energy-dependent cumulative reaction probability, N(E), whose Boltzmann average gives the thermal rate constant, k(T). Converged quantum mechanical calculations of N(E) remain a challenge even for three- and four-atom systems, and a longstanding goal of theoreticians has been to calculate N(E) accurately and efficiently using semiclassical methods. In this article we present a variety of methods for achieving this goal, by combining semiclassical initial value propagation methods with a reactant–product wavepacket correlation function approach to reactive scattering. The correlation function approach, originally developed for transitions between asymptotic internal states of reactants and products, is here reformulated using wavepackets in an arbitrary basis, so that N(E) can be calculated entirely from trajectory dynamics in the vicinity of the transition state. This is analogous to the approaches pioneered by Miller for the quantum calculation of N(E), and leads to a reduction in the number of trajectories and the propagation time. Numerical examples are presented for both one-dimensional test problems and for the collinear hydrogen exchange reaction.

Article information

Article type
Paper

Phys. Chem. Chem. Phys., 1999,1, 1081-1090

Semiclassical calculation of cumulative reaction probabilities

S. Garashchuk and D. J. Tannor, Phys. Chem. Chem. Phys., 1999, 1, 1081 DOI: 10.1039/A808881K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements