Issue 6, 1999

Group functions, Löwdin partition, and hybrid QC/MM methods for large molecular systems

Abstract

The problem of developing an exact form of the junction between the quantum and classical parts in a hybrid QC/MM approach is considered. We start from the full Hamiltonian for the whole system and assume a specific form of the electron wavefunction, which allows us to separate the electron variables relevant to the reactive (quantum) part of the system from those related to the inert (classical) part. Applying the Löwdin partition to the full Hamiltonian for the molecular system results in general formulae for the potential energy surfaces of a molecular system composed of different parts provided some of these parts are treated quantum mechanically whereas others are treated with use of molecular mechanics. These principles of separating electron variables have been applied to construct an efficient method for analysis of electronic structure and d-electron excitation spectra of transition metal complexes. This method has been also combined with the MM approximation in order to get a description for potential energy surfaces of the complexes and to develop a consistent approach to the known problem of extending molecular mechanics to transition metals.

Article information

Article type
Paper

Phys. Chem. Chem. Phys., 1999,1, 1051-1060

Group functions, Löwdin partition, and hybrid QC/MM methods for large molecular systems

A. L. Tchougréeff, Phys. Chem. Chem. Phys., 1999, 1, 1051 DOI: 10.1039/A808668K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements