Issue 10, 1998

Electrostatic ion chromatography using dilute electrolytes as eluents: a new method for separation of anions

Abstract

A new ion chromatographic method with unique separation selectivity and ultra-high sensitivity for the separation and detection of inorganic anions was developed. The method uses a conventional reversed-phase ODS stationary phase modified with a zwitterionic surfactant and an aqueous solution containing a small amount of electrolyte as the eluent. The elution order for the anions differed from that achieved by conventional anion-exchange, with for example, sulfate being eluted before chloride, and in contrast to the situation when water was used as mobile phase, only a single peak was observed for each analyte anion. Addition of the electrolyte to a water mobile phase resulted in an initial large increase in analyte retention times, but further increases in electrolyte concentration in the mobile phase produced only minor changes in retention time. Use of bicarbonate as the electrolyte anion permitted a suppressor to be used with conductometric detection. The ability to directly analyse samples of high ionic strength permitted the method to be applied to the determination of iodide in saline solution using direct UV absorbance detection, with a detection limit of 0.7 ppb. Both the positive and negative charges on the immobilised zwitterionic surfactant on the stationary phase and the ionic components of the electrolyte used in the eluent were considered to contribute to the separation.

Article information

Article type
Paper

Anal. Commun., 1998,35, 317-320

Electrostatic ion chromatography using dilute electrolytes as eluents: a new method for separation of anions

W. Hu and P. R. Haddad, Anal. Commun., 1998, 35, 317 DOI: 10.1039/A806149A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements