Issue 9, 1997

Structural characteristics of isoxazol-3-ol and isothiazol-3-ol, carboxy group bioisosteres examined by X-ray crystallography and ab initio calculations

Abstract

Low-temperature single-crystal structure determinations have been carried out on isoxazol-3-ol, 5-methyl-isoxazol-3-ol, isothiazol-3-ol and 5-methylisothiazol-3-ol, the heterocyclic ring systems used as carboxy group bioisosteres in numerous neuroactive analogues of 4-aminobutyric acid (GABA) and glutamic acid. All compounds form hydrogen-bonded dimers in the solid state. The OH · · ·  N hydrogen bonds are shorter in isoxazol-3-ols than in isothiazol-3-ols. The excess molecular van der Waals volume of the sulfur-containing ring systems as compared to the corresponding isoxazol-3-ols amounts to about 15%. The sulfur substitution significantly affects the position of the 5-substituents in relation to the heterocyclic ring. Such effects may contribute to the observed differences in pharmacological effects of the structurally related isoxazol-3-ol and isothiazol-3-ol amino acids. The geometries of the compounds have been optimized by ab initio calculations at the HF/6-31G* level, and in some cases also at the MP2/6-311G** level. The gas-phase calculations are in agreement with the experimental data, especially when correction for the effects of hydrogen bonding is made, as estimated using a complex between isoxazol-3-ol and formic acid. Calculated dipole moments of isoxazol-3-ols and isothiazol-3-ols are similar. Isoxazol-3-ol is more acidic than isothiazol-3-ol by 1.7 pKa unit as determined by 13C NMR titration, and the differences in acidity are believed to be one of the major factors causing the differences in the biological actions of isoxazol-3-ol amino acids and the corresponding isothiazol-3-ol analogues.

Article information

Article type
Paper

J. Chem. Soc., Perkin Trans. 2, 1997, 1783-1792

Structural characteristics of isoxazol-3-ol and isothiazol-3-ol, carboxy group bioisosteres examined by X-ray crystallography and ab initio calculations

K. Frydenvang, L. Matzen, P. Norrby, F. A. Sløk, T. Liljefors, P. Krogsgaard-Larsen and J. W. Jaroszewski, J. Chem. Soc., Perkin Trans. 2, 1997, 1783 DOI: 10.1039/A700332C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements