Molecular self-assembly composed of aromatic hydrogen-bond donor[ndash ]acceptor complexes
Abstract
Molecular self-assembling systems derived from the clustering of acid and base molecules have been investigated by mass spectrometric analysis of clusters isolated from liquid droplets. N–H···N and O–H···N hydrogen-bonded acid–base systems were compared. When heteroaromatic N–H···N hydrogen-bonding acid–base systems, such as 7-azaindole dimer, the indole–quinoline pair, etc. were used as acid–base pairs, the clusters composed of equimolar acid and base molecules were generated. This means that the hydrogen-bonding acid–base complex, N–H···N, behaves like a single molecule in cluster formation. On the other hand, clustering of the aromatic O–H···N hydrogen-bonding systems, such as phenol–pyridine, phenol–pyrazine, etc., was controlled by the acid–base interaction determined by the pKa values, giving a multilayer structure for a relatively strong acid–base pair and a monolayer structure for a relatively weak acid–base pair. Molecular self-assembling systems containing hydrogen-bond donor and acceptor molecules have been systematically described here.