Volume 108, 1997

Adiabatic and non-adiabatic dynamics studies of O(1D)+H2→OH+H

Abstract

This paper presents a detailed study of the title reaction, with emphasis on the contribution of excited electronic states, and on coupling between ground and excited states, in the reaction dynamics. Most of the calculations are based on diatomics-in-molecules (DIM) potential energy surfaces and couplings, but to provide calibration we compare adiabatic DIM results for the two lowest surfaces with corresponding results for high quality abinitio surfaces that were developed using the reproducing kernel Hilbert space interpolation method. These comparisons indicate that the DIM surfaces are close to being correct, with the most serious deficiencies occurring in the long range behavior of the 1A′ surface (too attractive), and the barrier height of the 1A″ surface (too high). The effect of non-adiabatic coupling has been described using Tully's fewest switches method and the DIM surfaces and couplings. We find that the surface hopping trajectories for collisions starting on the ground (1A′) surface show slightly colder product vibrations and rotations, and less backscattering than the equivalent adiabatic calculations, while the overall integral cross-sections are not significantly changed. For trajectories that start on the 2A′ surface, where reaction cannot occur in the absence of surface hopping, we find that the cross-section is often about half that associated with the 1A″ surface (which has the same collinear barrier but does not require hopping for reaction to occur). Product state distributions on the 2A′ surface are intermediate in character between 1A′ and 1A″.

Article information

Article type
Paper

Faraday Discuss., 1997,108, 357-374

Adiabatic and non-adiabatic dynamics studies of O(1D)+H2→OH+H

G. C. Schatz, L. A. Pederson and A. Philip J. Kuntz, Faraday Discuss., 1997, 108, 357 DOI: 10.1039/A705888H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements