Issue 24, 1997

Acetonitrile and propionitrile exchange at palladium(II) and platinum(II)

Abstract

Ligand exchange at square-planar [Pd(MeCN)4]2+ and [Pd(EtCN)4]2+ has been studied by 1H NMR line broadening and at [Pt(MeCN)4]2+ and [Pt(EtCN)4]2+ by isotopic labelling using 1H NMR spectroscopy in deuteriated nitromethane. Exchange takes place via two-term rate laws Rex/4 = (k1 + k2[RCN])cM with well defined k1 paths. Rate constants per co-ordination site k1298/s–1, k2298/kg mol–1 s–1 are 6.9 ± 1.6, 34 ± 3; 0.59 ± 0.12, 34 ± 3; 10.7 ± 1.8, 35 ± 4; (5.1 ± 2.3) × 10–6, (2.8 ± 0.2) × 10–5 and (5.5 ± 1.0) × 10–6, (3.3 ± 0.2) × 10–5 for [Pd(MeCN)4][CF3SO3]2, [Pd(MeCN)4][BF4]2, [Pd(EtCN)4][CF3SO3]2, [Pt(MeCN)4][CF3SO3]2 and [Pt(EtCN)4][CF3SO3]2, respectively. For [Pd(MeCN)4]2+ the k1 path is much larger for triflate than for tetrafluoroborate as counter ion. Changing the tetrafluoroborate concentration has no effect on the exchange rate of acetonitrile at [Pd(MeCN)4]2+. In this case the k1 path is ascribed to an attack by solvent at the metal centre. For triflate saturation kinetics is observed. This can be rationalized in terms of ion-pair formation followed by reversible intramolecular exchange of nitrile for triflate within the ion pair, with an equilibrium constant Kip300 = 8 ± 2 kg mol–1 and a rate constant k300 = 12.5 ± 1.3 s–1. All activation entropies are negative, indicating associative activation. A new, simple one-step synthesis of the substrate complexes as their triflate salts, using [M(acac)2] (acac = acetylacetonate) as starting material, and of [Pd(MeCN)4][BF4]2 using palladium(II) acetate, is described.

Article information

Article type
Paper

J. Chem. Soc., Dalton Trans., 1997, 4733-4738

Acetonitrile and propionitrile exchange at palladium(II) and platinum(II)

O. F. Wendt, N. K. Kaiser and L. I. Elding, J. Chem. Soc., Dalton Trans., 1997, 4733 DOI: 10.1039/A705048H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements