Issue 6, 1996

Laser ablation–inductively coupled plasma mass spectrometry with a time-of-flight mass analyser

Abstract

Laser ablation has been employed for sample introduction into an ICP-time-of-flight (TOF) mass spectrometer. The transients generated by the ablated material are generously sampled by the 10 kHz repetition rate of the TOF instrument. A detection limit of 10 ppb for Pb in a cast-iron standard is calculated from integration of a 0.3 s transient signal generated by a single laser pulse. By simultaneously acquiring and rationing the signals from two isotopes of Zn, the substantial pulse-to-pulse power fluctuations from the laser are virtually eliminated. Although some of the data are presented in a single- or double-channel acquisition mode, the results demonstrate the sensitivity and rationing abilities available for all elements and isotopes simultaneously from a single laser pulse. Use of a digital oscilloscope provides a full elemental spectrum for each laser pulse as the laser is rastered across a lava sample that contains plagioclase crystals. The relative spatial distributions for 11 elements of interest contained in this sample are plotted over an 11 mm distance. This paper is not intended to be a display of state-of-the-art laser-ablation techniques, as the large beam divergence of the ruby laser limits the spatial resolution to 1 mm. However, the ability of the plasma-source TOF mass spectrometer for analysing transient signals is clearly demonstrated.

Article information

Article type
Paper

J. Anal. At. Spectrom., 1996,11, 401-405

Laser ablation–inductively coupled plasma mass spectrometry with a time-of-flight mass analyser

P. P. Mahoney, G. Li and G. M. Hieftje, J. Anal. At. Spectrom., 1996, 11, 401 DOI: 10.1039/JA9961100401

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements