Issue 19, 1996

Molecular self-assembly controlled by acid–base non-covalent interactions: a mass spectrometric study of some organic acids and bases

Abstract

Molecular clusters generated from vacuum adiabatic expansion of liquid droplets including acid and base molecules provide an insight into molecular self-assembly through non-covalent interactions. The mass spectrometric analysis for the resulting clusters indicates a systematic structure change which is dependent on the acid–base interaction: a multilayer stacking structure for relatively strong acid–base pairs (phenol–pyridine, phenol–N,N-dimethylaniline, etc.), and a monolayer structure for relatively weak acid–base pairs (phenol–pyrazine, cyclohexanol–pyridine, etc.). As another viewpoint, mass spectrometry of the molecular clusters composed of acid and base molecules can be presented as a new method to characterise the acid–base interaction.

Article information

Article type
Paper

J. Chem. Soc., Faraday Trans., 1996,92, 3539-3544

Molecular self-assembly controlled by acid–base non-covalent interactions: a mass spectrometric study of some organic acids and bases

A. Wakisaka, Y. Akiyama, Y. Yamamoto, T. Engst, H. Takeo, F. Mizukami, K. Sakaguchi and H. Jones, J. Chem. Soc., Faraday Trans., 1996, 92, 3539 DOI: 10.1039/FT9969203539

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements