Issue 8, 1996

Photochromism of naphthoxazine-spiro-indolines by direct excitation and following sensitisation by triplet-energy donors

Abstract

Quantum efficiencies of merocyanine formation, (ΦA), have been measured for several naphthoxy-spiro-indolines, (NOSIs) in a variety of solvents as well as in several polyurethane matrices having different glass-transition temperatures. In toluene solution ΦA values range from 0.74 to 0.33 with those compounds substituted with electron-donating substituents in the 6′-position on the oxazine ring giving the highest yields. Quantum yields for merocyanine formation are also sensitive to change of solvent, being the highest in toluene and the lowest in methanol. Interestingly, in highly viscous polyurethane matrices quantum yields are typically in the range 0.1 to 0.2. Surprisingly, replacing the methyl group on the nitrogen in the indoline part of the molecule with an isobutyl group has no effect on the quantum yield in either toluene or in a polyurethane matrix. Triplet-energy donation has been used to establish that a triplet pathway leading to merocyanine formation is available and that the efficiency of merocyanine formation via triplet-state sensitization is close to unity for each of the three derivatives studied in toluene as solvent. By using various triplet-energy donors and measuring the values of the resulting quenching rate constants the lowest triplet energy of 1,3,3-trimethylspiro(indoline-2,3′[3H]naphth[2,1-b]-6′-indolino[1,4]oxazine) has been determined as 200 ± 5 kJ mol–1 which is consistent with sensitization via the triplet state associated with the oxazine part of the molecule. For donors with triplet-state energies > 210 kJ mol–1 quenching constants were shown to reach a plateau value of 4.5 ± 0.3 × 109 dm3 mol–1 s–1.

Article information

Article type
Paper

J. Chem. Soc., Faraday Trans., 1996,92, 1323-1330

Photochromism of naphthoxazine-spiro-indolines by direct excitation and following sensitisation by triplet-energy donors

J. Hobley and F. Wilkinson, J. Chem. Soc., Faraday Trans., 1996, 92, 1323 DOI: 10.1039/FT9969201323

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements