Volume 103, 1996

Protein hydration dynamics in aqueous solution

Abstract

Water oxygen-17 and deuteron spin relaxation rates, measured as a function of resonance frequency, have been used to study the dynamics of protein hydration in aqueous solutions of ribonuclease A, lysozyme, myoglobin, trypsin and serum albumin. The relaxation data conform to the picture of protein hydration dynamics, proposed on the basis of previous studies of smaller proteins, where the long-lived water molecules responsible for the relaxation dispersion are identified with a small number of integral water molecules seen in the crystal structures. These integral water molecules, with residence times in the range 10–9–10–3 s, are either buried in internal cavities, trapped in narrow clefts or coordinated to metal ions. For the water molecules in the traditional hydration layer at the protein surface, the relaxation data suggest an average residence time in the range 10–50 ps, consistent with high-resolution 1H spectroscopy and computer simulations. The relaxation data also reveal some more specific features of protein hydration, relating to hydration of cavities that appear empty by crystallography, entrapment of water between structural domains of large proteins and subnanosecond 180° flips in buried water clusters.

Article information

Article type
Paper

Faraday Discuss., 1996,103, 227-244

Protein hydration dynamics in aqueous solution

V. P. Denisov and B. Halle, Faraday Discuss., 1996, 103, 227 DOI: 10.1039/FD9960300227

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements