Issue 4, 1995

Nature of nitrenium:carboxylate ion pair intermediates in the hydrolysis of O-aroyl-N-acetyl-N-(2,6-dimethylphenyl)hydroxylamines

Abstract

O-Aroyl-N-acetyl-N-(2,6-dimethylphenyl)hydroxylamines [aroyl = benzoyl (1a), 3-nitrobenzoyl (1b), and pentafluorobenzoyl (1c)] are solvolysed in aqueous solutions by rate-limiting ionization to nitrenium : carboxylate ion pair intermediates. These in part collapse at the ortho position to give unstable 1,5-dimethyl-5-aroyloxy-6-acetyliminocyclohexa-l,3-dimes 2 that react further as described in the previous paper. The ion pairs from 1 also proceed directly to products of substitution para to the acetylamino group—4-aroyloxy-2,6-dimethylacetanilide 5, a product of internal return, and 4-hydroxy-2,6-dimethylacetanilide 6, a product of water addition. These same products also arise via ionization of 2. The ratio 5:6 obtained directly from 1 is significantly lower than that from 2, demonstrating that 1 and 2 do not ionize to exactly the same ion pairs. Experiments with 1a in the presence of bromide show that the yield of the cyclohexadiene is unaffected, while the yields of 5 and 6 are decreased, albeit to different amounts. Two new products, 4-bromo-2,6-dimethylacetanilide and 2,6-dimethylacetanilide, are observed in their places. Experiments with 1c in acid solutions demonstrate that the yield of cyclohexadiene can be decreased by H+, by protonation of the carboxylate ion in the ion pair. Using the H+ reaction as a clock, the lifetime of this ion pair, the initial ion pair in the ionization of 1, is calculated as ca. 10 ps. Thus this ion pair is too short-lived to react with external nucleophiles, and probably also with solvent. The trapping data for the p-ester 5 are shown to be inconsistent with a mechanism where a single ion pair serves as precursor, and this product is proposed to arise in part from a short-lived ion pair, and in part from a longer-lived one. The latter ion pair is probably also the species that gives rise to the p-phenol 6 by reaction with water. Using the bromide reaction as the clock, this ion pair is shown to have a lifetime of 0.25–0.50 ns. A number of mechanistic models incorporating these features are consistent with the experimental results, and two of these are discussed. Whatever the mechanism a minimum of three shortlived ion pair intermediates is required.

Article information

Article type
Paper

J. Chem. Soc., Perkin Trans. 2, 1995, 663-671

Nature of nitrenium:carboxylate ion pair intermediates in the hydrolysis of O-aroyl-N-acetyl-N-(2,6-dimethylphenyl)hydroxylamines

J. C. Fishbein and R. A. McClelland, J. Chem. Soc., Perkin Trans. 2, 1995, 663 DOI: 10.1039/P29950000663

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements