Issue 10, 1994

An extended form of the Evans–Polanyi equation: a simple empirical relationship for the prediction of activation energies for hydrogen-atom transfer reactions

Abstract

An empirical approach has been used to devise a simple relationship [eqn. (B)] between the activation energy for an elementary hydrogen-atom transfer reaction (A) and ground state properties A˙+ H–B → A–H + B˙(A), Ea=Eof+αΔH°(1–d)+βΔχAB2+γ(sA+sB)(B) of the reactants and products. The role of polar effects, which operate in the transition state, is emphasised and described quantitatively in terms of the difference in Mulliken electronegativities (ΔχAB) of the radicals A˙ and B˙. Eqn. (B) reproduces the activation energies for 65 reactions, taken from the literature, within a standard error of ±2.0 kJ mol –1 and with a correlation coefficient of 0.988. Reactions of widely differing types are included and no distinction is made between gas-phase reactions and those which take place in non-polar solvents. Examples of hydrogen-atom transfer reactions which are not treated satisfactorily by eqn. (B) are discussed.

Article information

Article type
Paper

J. Chem. Soc., Perkin Trans. 2, 1994, 2155-2162

An extended form of the Evans–Polanyi equation: a simple empirical relationship for the prediction of activation energies for hydrogen-atom transfer reactions

B. P. Roberts and A. J. Steel, J. Chem. Soc., Perkin Trans. 2, 1994, 2155 DOI: 10.1039/P29940002155

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements