Issue 10, 1994

Spin-state equilibria in non-aqueous solution and quantum-mechanical investigations of iron(II) and nickel(II) complexes with 4-substituted 2,6-bis(benzimidazol-2-yl)pyridines

Abstract

Cationic complexes with a series of tridentate ligands, L = 4X-substituted 2,6-bis(benzimidazol-2-yl)pyridines, [ML2][ClO4]2(M = Fe or Ni; X = H, OH or Cl), were isolated and characterized, together with the free pyridines, by elemental analysis, Fourier-transform IR, 1H NMR and UV/VIS spectroscopy. The syntheses were performed via condensation of o-phenylenediamine with 4-substituted pyridine-2,6-dicarboxylic acids. Ligand-field parameters were estimated for the nickel complexes. The [FeL2]2+ species show thermally induced spin-crossover behaviour (1A15T2g) which has been investigated in methanol, nitromethane and 20%(v/v) dimethylformamide in MeOH. The behaviour is complicated by two complex dissociation equilibria, for which equilibrium constants have been evaluated. Ligand substitution is reflected in a change of the spin state in solution (µexptl= 2.50, X = H; 4.19, OH; and 4.49 µB, Cl at 295 K, in MeOH) and in the metal-to-ligand charge-transfer band (500–557 nm); when M = Fe and X = H there is a pronounced spin-crossover equilibrium in methanolic solution (µexptl= 1.31–3.45 µB for 213–328 K). A small variation of the magnetic moments when M = Fe and X = OH (µexptl= 3.77–4.73 µB at 220–332 K) might indicate a temperature-variable population of the 5Eg sublevel or variation in hydrogen bonding. The results are compared with quasi-relativistic quantum-mechanical calculations, and the spin-crossover behaviour of the new ligands, L, with substituents X = CHO, NH2, CN, Me, NO2, OH, CONH2, COCl, SH, F, Cl, Br or I has been estimated. The differences in the calculated heats of formation between the high-and low-spin forms of [FeL2]2+ when plotted against Δδ(=1H NMR para increment for substituents X in benzene) show a turning point in the region around X = H and in this region spin-crossover behaviour is observed. Outside this region there is very little or no such behaviour and it is therefore possible to predict the spin-crossover behaviour for other substituents X from the Δδ value.

Article information

Article type
Paper

J. Chem. Soc., Dalton Trans., 1994, 1523-1531

Spin-state equilibria in non-aqueous solution and quantum-mechanical investigations of iron(II) and nickel(II) complexes with 4-substituted 2,6-bis(benzimidazol-2-yl)pyridines

W. Linert, M. Konecny and F. Renz, J. Chem. Soc., Dalton Trans., 1994, 1523 DOI: 10.1039/DT9940001523

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements