Issue 6, 1991

Photogenerated amines and their use in the design of a positive-tone resist material based on electrophilic aromatic substitution

Abstract

The photogeneration of an active amine within a cationically curable polymer coating can be used to design a novel positive-tone resist material. The resist is based on a copolymer containing 4-hydroxystyrene as well as 4-acetoxymethylstyrene units; when heated in the presence of an acid, this copolymer crosslinks through an electrophilic aromatic substitution process. Therefore, a small amount of 2-nitrobenzyl toluene-p-sulphonate, that decomposes upon heating to produce toluene sulphonic acid, is added to the resist along with a thermally stable but photoactive carbamate that liberates an amine upon irradiation. Exposure of a film of the resist to 254 nm UV radiation results in the formation of a latent image consisting of amine molecules dispersed within the polymer film. The latent image is ‘fixed’ by heating; this liberates acid, which is neutralized where amine has been formed, but causes crosslinking of the polymer by a cationic process in those areas of the film where no amine has been produced. This resist, based on an image-reversal concept applicable to numerous cationically activated resists, can be developed in aqueous base and shows a good sensitivity of ca. 19 mJ cm–2.

Article information

Article type
Paper

J. Mater. Chem., 1991,1, 1045-1050

Photogenerated amines and their use in the design of a positive-tone resist material based on electrophilic aromatic substitution

S. Matuszczak, J. F. Cameron, J. M. J. Fréchet and C. G. Wilson, J. Mater. Chem., 1991, 1, 1045 DOI: 10.1039/JM9910101045

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements