Issue 4, 1990

ESR studies of high critical-temperature superconductors. Absorption at low magnetic fields

Abstract

One of the most intriguing aspects of ESR studies of oxide superconductors is the presence of a broad, and intense, low-field microwave absorption which grows in intensity upon cooling the sample through the superconducting transition temperature (Tc). In the present investigations we exploit the low-field response as a screening technique for superconductivity in a range of oxide materials. The materials investigated, derivatives of the 90 K superconductor YBa2Cu3O7, were specifically chosen so that Tc could be drastically modified either by oxygen loss or cation substitution. In all of these materials a clear correlation exists between the onset temperature of the low-field absorption and the superconducting transition temperature, as gauged by both a.c. inductive and electrical resistivity measurements. The temperature range over which the superconductivity onset was detected by these complementary methods extended from ca. 90 K down to ca. 30 K in the case of a Zn-substituted YBa2Cu3O7. Measurements on the corresponding Bi–Sr–Ca–Cu–O system, which becomes superconducting for temperatures below 110 K, also illustrate that this absorption phenomenon is not unique to YBa2Cu3O7 and hence will have widespread applicability in detecting superconductivity.

Article information

Article type
Paper

J. Chem. Soc., Faraday Trans., 1990,86, 683-689

ESR studies of high critical-temperature superconductors. Absorption at low magnetic fields

R. Jones, R. Janes, R. Armstrong, K. K. Singh, P. P. Edwards, D. J. Keeble and M. R. Harrison, J. Chem. Soc., Faraday Trans., 1990, 86, 683 DOI: 10.1039/FT9908600683

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements