Issue 4, 1987

The configuration and lattice dynamics of complexes of dialkyltin(IV) with adenosine 5′-monophosphate and phenyl phosphates

Abstract

The dialkyltin (IV) complexes of the mononucleotide adenosine 5′-monophosphate (AMP) and of phenyl phosphate, SnR2(AMP)·2H2O (R = Me or Bun) and SnR2[PO3(OPh)](R = Me, Et, or Bun), have been prepared and structurally characterized in the solid state by means of 119Sn Mössbauer spectroscopy, determination of lattice dynamics by temperature-dependent 119Sn Mössbauer spectroscopy, and by vibrational studies using conventional and Fourier-transform i.r. spectroscopy. The known diphenyl phosphate complexes SnR2[PO2(OPh)2]2(R = Me, Et, or Bun) have been similarly investigated, particularly with respect to their lattice dynamics. A distorted-octahedral configuration is proposed for the tin environment in the complexes SnR2(AMP)·2H2O (which appear to be phosphate-only bonded species) and SnR2[PO3(OPh)], involving a trifurcated oxygen atom and bent SnC2 skeletons; these units appear to be embedded into two-dimensional solid-state polymers originating from intermolecular bridging of the phosphate groups. The regular octahedral structure, with linear SnC2 skeletons, which has been inferred for the complexes SnR2[PO2(OPh)2]2, as well as their polymeric, sheet-like, nature, has been confirmed.

Article information

Article type
Paper

J. Chem. Soc., Dalton Trans., 1987, 789-794

The configuration and lattice dynamics of complexes of dialkyltin(IV) with adenosine 5′-monophosphate and phenyl phosphates

R. Barbieri, G. Alonzo and R. H. Herber, J. Chem. Soc., Dalton Trans., 1987, 789 DOI: 10.1039/DT9870000789

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements