Issue 2, 1983

The synthesis of [Ru5C(CO)15] by the carbonylation of [Ru6C(CO)17] and the reactions of the pentanuclear cluster with a variety of small molecules: the X-ray structure analyses of [Ru5C(CO)15], [Ru5C(CO)15(MeCN)], [Ru5C(CO)14(PPh3)], [Ru5C(CO)13(PPh3)2], and [Ru5(µ-H)2C(CO)12{Ph2P(CH2)2PPh2}]

Abstract

The hexaruthenium cluster [Ru6C(CO)17] reacts with CO at 70 °C and 80 atm to produce [Ru5C(CO)15](1) and [Ru(CO)5]. Complex (1) crystallises in space group P21/c with a= 16.448(3), b= 14.274(2), c= 20.834(4)Å, β= 91.36(2)°, and Z= 8. The structure was found to be isomorphous with the analogue [Os5C(CO)15], and was refined to R= 0.051 for 3 256 diffractometer data. The five Ru atoms adopt a square-pyramidal geometry with an exposed carbido-atom lying 0.11 (2)Å beneath the basal plane. Reaction of complex (1) with the nitrogen-donor ligand MeCN yields the adduct [Ru5C(CO)15(MeCN)](2) which exhibits a bridged butterfly arrangement of metal atoms with a central carbido-atom. The complex crystallises in space group P21/n with a= 14.116(6), b= 18.167(7), c= 10.276(4)Å, β= 95.14(3)°, and Z= 4; the structure was solved by direct methods and difference techniques and refined to R= 0.047 for 1 604 diffractometer data. Reactions of complex (1) with tertiary phosphine ligands PR3[R = Ph (3) or MePh2(4)] or Ph2P(CH2)nPPh2[n= 1 (5) or 2 (6)] produce the substituted complexes [Ru5C(CO)15-m(PR3)m][m= 1 (3a, 4a), 2 (3b, 4b), or 3 (3c, 4c)] or [Ru5C(CO)13{Ph2P(CH2)nPPh2}][n= 1 (5) or 2 (6)]. The structures of these complexes are closely related to that of (1). Complex (3a) crystallises in space group Pn with a= 9.953(2), b= 12.247(2), c= 14.703(3)Å, β= 91.23(2)°, and Z= 2, (3b) in space group P21/c with a= 15.923(4), b= 12.494(3), c= 25.210(7)Å, β= 93.28(2)°, and Z= 4. Both structures were solved by a combination of direct methods and Fourier techniques and were refined to R= 0.021 for 3 305 reflections (3a) and R= 0.039 for 4 127 reflections (3b), respectively. Hydrogenation of (6) gives the dihydro-complex [Ru5(µ-H)2C(CO)12{Ph2P(CH2)2Ph2}] which crystallises in space group P21 with a= 12.210(4), b= 18.602(6), c= 18.409(6)Å, β= 97.63(2)°, and Z= 4. The structure was solved using the same techniques as the other complexes and refined to R= 0.064 for 3 510 diffractometer data. Treatment of complex (1) with halide ions gives the anionic clusters [Ru5C(CO)15X](X = F, Cl, Br, or I) whose structures are similar to that of (2). Protonation of these anions gives the monohydrido-clusters [Ru5H(C)(CO)15X]. With Cl2 and Br2 complex (1) undergoes fragmentation to give dimers [Ru2(CO)6X4](X = Cl or Br); in contrast, reaction with I2 gives [Ru5C(CO)15I2].

Article information

Article type
Paper

J. Chem. Soc., Dalton Trans., 1983, 277-290

The synthesis of [Ru5C(CO)15] by the carbonylation of [Ru6C(CO)17] and the reactions of the pentanuclear cluster with a variety of small molecules: the X-ray structure analyses of [Ru5C(CO)15], [Ru5C(CO)15(MeCN)], [Ru5C(CO)14(PPh3)], [Ru5C(CO)13(PPh3)2], and [Ru5(µ-H)2C(CO)12{Ph2P(CH2)2PPh2}]

B. F. G. Johnson, J. Lewis, J. N. Nicholls, J. Puga, P. R. Raithby, M. J. Rosales, M. McPartlin and W. Clegg, J. Chem. Soc., Dalton Trans., 1983, 277 DOI: 10.1039/DT9830000277

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements