Issue 8, 1982

Pulse radiolysis of methyl viologen in aqueous solutions

Abstract

Pulse radiolysis of air-free aqueous methyl viologen (MV2+) solutions was carried out at various pH. The attack of eaq on MV2+, with k(eaq+ MV2+)= 7.5 × 1010 dm3 mol–1 s–1, leads to the formation of the long-lived radical cation (MV˙+), which possesses two absorption maxima at 392.5 nm (ε392.5= 4200 m2 mol–1) and 600 nm (ε600= 1450 m2 mol–1). The H-atoms react with MV2+ at pH 1 forming two species, which have superimposed absorption bands. By means of a computer simulation they are resolved in the absorptions belonging to: (1) a protonated form of the radical cation (MV˙+H+), which is produced with k(H + MV2+)=(3.5 ± 0.2)× 108 dm3 mol–1 s–1, has 2 absorption maxima at 390 nm (ε390= 1700 m2 mol–1) and 595 nm (ε595= 760 m2 mol–1) and decays by second-order kinetics with k= 3.5 × 109 dm3 mol–1 s–1; (2) an H-adduct (MV˙2+H) on the ring carbon, which is formed with k(H + MV2+)= 2.5 × 108 dm3 mol–1 s–1, absorbs at 310 nm (ε310= 900 m2 mol–1) and 470 nm (ε470= 630 m2 mol–1) and decays by conversion into MV˙+H+ in a first-order process with k= 6 × 103 s–1. For the equilibrium MV˙+H+⇌ MV˙++ H+ pK= 2.9 ± 0.1 was determined. The presented data explain, at least partly, the instability of MV2+ when used as an electron acceptor in various devices for the utilization of solar energy.

Article information

Article type
Paper

J. Chem. Soc., Faraday Trans. 1, 1982,78, 2467-2477

Pulse radiolysis of methyl viologen in aqueous solutions

S. Solar, W. Solar, N. Getoff, J. Holcman and K. Sehested, J. Chem. Soc., Faraday Trans. 1, 1982, 78, 2467 DOI: 10.1039/F19827802467

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements