Volume 72, 1981

Transport and reactivity of hydrocarbon molecules in a shape-selective zeolite

Abstract

For the catalytic cracking of C6 to C9 hydrocarbons on ZSM-5, we demonstrate quantitatively the contributions of each of two mechanisms for molecular shape selectivity. Using crystallites of different sizes and activities, and classical methods for evaluating diffusion inhibition of the reaction rate, we separate the effects of mass-transport-induced selectivity from that created by steric inhibition by the size of a reaction complex. The selective cracking of n-paraffins compared to monomethyl paraffins (from C6 to C9) is due to a higher intrinsic rate constant of the n-paraffin, with diffusional mass transport playing no appreciable role. In contrast, dimethyl paraffin cracking is strongly diffusion-inhibited. The methyl paraffin/n-paraffin discrimination is a result of steric constraint on the sizeable methyl paraffin/carbonium ion reaction complex. This structural selectivity is shown to be absent for the corresponding olefins where such complexes do not arise. The diffusivities at reaction conditions have been determined. For the linear hydrocarbon, diffusivity notably exceeds that expected from the Knudsen model. This reminds us to review assumptions of conventional concepts of mass transport. The availability of zeolites now allows us to probe many basic phenomena in catalysis, molecular configuration and dynamics, including mass transport.

Article information

Article type
Paper

Faraday Discuss. Chem. Soc., 1981,72, 317-330

Transport and reactivity of hydrocarbon molecules in a shape-selective zeolite

W. O. Haag, R. M. Lago and P. B. Weisz, Faraday Discuss. Chem. Soc., 1981, 72, 317 DOI: 10.1039/DC9817200317

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements