Issue 0, 1974

Studies of heterocyclic compounds. Part XVI. Mechanism of electrophilic substitution of 6a-thiathiophthens and related compounds: nitrosation with rearrangement

Abstract

Nitrosation of 6a-thiathiophthens and related compounds occurs with rearrangement. 6a-Thiathiophthens, 1-oxa-6,6a-dithiapentalenes, and 1,6a-dithia-6-azapentalenes rearrange into 1-oxa-6,6a-dithia-2-azapentalenes, and 1,6-dioxa-6a-thiapentalenes into 1,6-dioxa-6a-thia-2-azapentalenes. 6a-Thiathiophthens react with nitrous acid with difficulty unless activated by strongly electron-releasing substituents. 2-t-Butyl-6a-thiathiophthen reacted at position 4 to give 3-formyl-5-t-butyl-1-oxa-6,6a-dithia-2-azapentalene in low yield. 2-Methylthio-5-t-butyl-and 2-dimethylamino-5-t-butyl-6a-thiathiophthen reacted readily at position 3 to give the methyl 3-dithiocarboxylate and the 3-NN-dimethylthiocarboxamide of 5-t-butyl-1-oxa-6,6a-dithia-2-azapentalene, respectively, selective desulphurisation of which afforded the corresponding S-methyl thioester and NN-dimethylcarboxamide. 5-Phenyl-, 5-t-butyl-, and 2,5-dimethyl-1-oxa-6,6a-dithiapentalene reacted smoothly at position 3 to give the corresponding 3-formyl(acetyl)-1-oxa-6,6a-dithia-2-azapentalenes. 6-Methyl-2-phenyl- and 6-methyl-2-t-butyl-1,6a-dithia-6-azapentalene also gave 3-formyl-1-oxa-6,6a-dithia-2-azapentalenes by hydrolysis in situ of the intermediate 3-methyliminomethyl-1-oxa-6,6a-dithia-2-azapentalenes. 1-Oxa-6,6a-dithiapentalenes and 1,6a-dithia-6-azapentalenes in which the reactive position 3(4) is blocked, reacted at position 3(4) with elimination of the formyl or methyliminomethyl group to yield 1-oxa-6,6a-dithia-2-azapentalenes. Nitrosation of 1,6-dioxa-6a-thiapentalene with nitrosyl hexafluorophosphate gave 3-formyl-1,6-dioxa-6a-thia-2-azapentalene, the first reported derivative of the 1,6-dioxa-6a-thia-2-azapentalene system. A mechanism is proposed to account for the various features of the electrophilic substitution of 6a-thiathiophthens and related hypervalent heterocyclic systems. It is proposed that reaction proceeds by way of stable 6π-electron monocyclic cations, such as 1,2-dithiolium and 1,2-oxathiolium.

Article information

Article type
Paper

J. Chem. Soc., Perkin Trans. 1, 1974, 722-728

Studies of heterocyclic compounds. Part XVI. Mechanism of electrophilic substitution of 6a-thiathiophthens and related compounds: nitrosation with rearrangement

R. M. Christie, A. S. Ingram, D. H. Reid and R. G. Webster, J. Chem. Soc., Perkin Trans. 1, 1974, 722 DOI: 10.1039/P19740000722

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements