Volume 50, 1970

Investigation of liquid-liquid phase transitions in oxide melts by viscosity measurements

Abstract

Results from viscosity measurements conducted both above and below the liquid-liquid phase transition of a series of molten oxide glasses are reported in order to analyze the effect of supercritical composition fluctuations on viscous flow, and to investigate the mechanisms of phase separation. Measurements of four oxide mixtures with similar high temperature structures and widely different critical temperatures, revealed an anomalous increase in viscosity at temperatures above the critical point. The anomalous increase occurs when large composition fluctuations characterizing the critical point are present. The effect is explained in terms of an interaction between viscous flow and the supercritical fluctuations through the structural relaxation process. An analysis of this interaction is presented.

Measurements conducted at temperatures slightly below the critical point of one of these glasses indicate that the microstructure resulting from the phase separation is highly sensitive to the preceding heat-treatment. Phase separation by the formation of isolated spheres of the silica-rich component is identified a few degrees below the critical point. Further measurements of viscosity by a fibre elongation method, conducted far below the critical temperature, are reported in order to analyze the growth mechanisms occurring in the separated phases. In this case, the rearrangement stage of phase separation is characterized by a growing interconnected structure.

Article information

Article type
Paper

Discuss. Faraday Soc., 1970,50, 155-165

Investigation of liquid-liquid phase transitions in oxide melts by viscosity measurements

J. H. Simmons, P. B. Macedo, A. Napolitano and W. K. Haller, Discuss. Faraday Soc., 1970, 50, 155 DOI: 10.1039/DF9705000155

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements