Issue 5, 2011

Tail-labelling of DNA probes using modified deoxynucleotide triphosphates and terminal deoxynucleotidyl tranferase. Application in electrochemical DNA hybridization and protein-DNA binding assays

Abstract

A simple approach to DNA tail-labelling using terminal deoxynucleotidyl transferase and modified deoxynucleoside triphosphates is presented. Amino- and nitrophenyl-modified dNTPs were found to be good substrates for this enzyme giving 3′-end stretches of different lengths depending on the nucleotide and concentration. 3-Nitrophenyl-7-deazaG was selected as the most useful label because its dNTP was efficiently incorporated by the transferase to form long tail-labels at any oligonucleotide. Accumulation of many nitrophenyl tags per oligonucleotide resulted in a considerable enhancement of voltammetric signals due to the nitro group reduction, thus improving the sensitivity of electrochemical detection of the tail-labelled probes. We demonstrate a perfect discrimination between complementary and non-complementary target DNAs sequences by tail-labelled hybridization probes as well as the ability of tumour suppressor p53 protein to recognize a specific binding site within tail-labelled DNA substrates, making the methodology useful in electrochemical DNA hybridization and DNA-protein interaction assays.

Graphical abstract: Tail-labelling of DNA probes using modified deoxynucleotide triphosphates and terminal deoxynucleotidyl tranferase. Application in electrochemical DNA hybridization and protein-DNA binding assays

Article information

Article type
Paper
Submitted
09 Oct 2010
Accepted
11 Nov 2010
First published
04 Jan 2011

Org. Biomol. Chem., 2011,9, 1366-1371

Tail-labelling of DNA probes using modified deoxynucleotide triphosphates and terminal deoxynucleotidyl tranferase. Application in electrochemical DNA hybridization and protein-DNA binding assays

P. Horáková, H. Macíčková-Cahová, H. Pivoňková, J. Špaček, L. Havran, M. Hocek and M. Fojta, Org. Biomol. Chem., 2011, 9, 1366 DOI: 10.1039/C0OB00856G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements