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Nanocatalysis—facing a sustainable future

Zhiqun Lin,*a In Young Kim*b and Michelle L. Personick*c

Catalysis is at the heart of industrial pro-
cesses, with an estimated 85–90% of
manufacturing involving at least one
catalytic step. From food products to
everyday items like contact lens cleaners
and detergents, catalysis is essential.
Catalytic processes contribute to over
35% of global GDP, particularly in the
petroleum, energy, chemicals, and food
production industries.1 As the global
population grows and energy demands
surge—projected to reach 29.5 billion
TOE by 2100—catalysis will play an ever-
greater role in meeting these challenges
sustainably.

However, economic growth cannot
come at the cost of increasing environ-
mental pressures.2 Hence, the need for
advanced catalytic technologies that can
support sustainable development is
becoming urgent. The efficiency of cata-
lytic processes depends on many factors,
with structural and electronic properties
of catalysts being central to their per-
formance.3 The rise of nanocatalysis,
enabled by advances in nanoscience and
nanotechnology, allows precise control
over the composition, morphology, and
electronic states of catalysts, greatly
enhancing their functionality. Machine

learning, advanced characterization
techniques, and computational chem-
istry have all accelerated progress in
this field, leading to remarkable
breakthroughs.

This themed collection on nanocata-
lysis brings together a collection of
articles that showcase cutting-edge
developments and challenges in the
field. The research spans a wide range of
topics, including novel catalyst design,
mechanistic insights, and catalytic appli-
cations across electrocatalysis, photoca-
talysis, and biocatalysis. Below is a brief
overview of the articles featured in this
collection, classified into five broad cat-
egories: design, structure, and mecha-
nism of nanocatalysts; nanomaterials for
electrocatalysis; nanomaterials for
photocatalysis and photoelectrochemical
application; nanomaterials for thermal
catalysis; and emerging applications of
nanocatalysts.

Rational design and mechanistic
insights into high-performance nanoca-
talysts are key to developing more
efficient catalysts. Tsukuda et al. (https://
doi.org/10.1039/D3NR05857C) review
recent advances in the synthesis and
catalytic applications of atomically
precise Au/Ag nanoclusters doped with
single atoms, offering future perspec-
tives on the rational development of
active and selective metal nanocluster
catalysts. Hsu et al. (https://doi.org/
10.1039/D4NR01178C) systematically
review advanced nanoscale catalysts for
hydrogen production via water splitting,
highlighting modification strategies
such as doping, morphology control,

and heterojunction/homojunction struc-
tures, along with the corresponding cata-
lytic mechanisms. Heteroatom doping
and interface engineering are effective
strategies for regulating the electronic
structure of catalysts, thereby enhancing
their catalytic performance. Liu et al.
(https://doi.org/10.1039/D4NR01010H)
developed a high-performance hydrogen
evolution catalyst by incorporating Ru
atoms into a nanosheet array. Single-
atom catalysts have gained significant
interest for their near-100% atomic util-
ization and uniformly distributed active
sites. Their performance can be
enhanced by optimizing the surrounding
coordination environment (https://doi.
org/10.1039/D4NR00337C, https://doi.
org/10.1039/D4NR02650K, https://doi.
org/10.1039/D4NR01635A and https://
doi.org/10.1039/D4NR01134A). In par-
ticular, Zou et al. (https://doi.org/
10.1039/D4NR00077C) developed a dual-
atom catalyst that surpasses the perform-
ance of single-atom catalysts. Using two-
dimensional materials with highly
exposed surfaces as substrates is con-
sidered an effective strategy for con-
structing efficient catalysts (https://doi.
org/10.1039/D4NR01517G, https://doi.
org/10.1039/D4NR01911C, https://doi.
org/10.1039/D4NR01117A, https://doi.
org/10.1039/D4NR01122H, https://doi.
org/10.1039/D4NR01932F, https://doi.
org/10.1039/D4NR01743A, https://doi.
org/10.1039/D4NR01013B, https://doi.
org/10.1039/D4NR01611D, https://doi.
org/10.1039/D4NR01168F, https://doi.
org/10.1039/D4NR01154F, https://doi.
org/10.1039/D4NR01186D, https://doi.
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org/10.1039/D4NR00796D, https://doi.
org/10.1039/D4NR01191K and https://
doi.org/10.1039/D4NR00975D). In
addition, high-entropy materials (https://
doi.org/10.1039/D4NR00474D and
https://doi.org/10.1039/D4NR01538J) offer
significant advantages in catalysis due to
their broader compositional design and
flexible, diverse microstructures.

Regarding electrocatalysis, Wu et al.
(https://doi.org/10.1039/D4NR02519A)
developed intermetallic NiCo electrocata-
lysts to enhance the efficiency of the
hydrogen evolution reaction in alkaline

conditions. Wang et al. (https://doi.org/
10.1039/D4NR01320D) employed an
effective piezoelectric method to
enhance catalytic water splitting activity
significantly, without altering the
material’s morphology or composition,
by modulating bulk charge separation.
Yang et al. (https://doi.org/10.1039/
D4NR01071J) enhanced hydrogen evol-
ution efficiency by partially substituting
nitrogen with oxygen in the Ni3N cata-
lyst, thereby tuning its electronic struc-
ture. In particular, Song et al. (https://
doi.org/10.1039/D4NR00170B) acceler-

ated the kinetically sluggish oxygen
evolution reaction in water electrolysis
by leveraging the photothermal effect.
To enable overall water electrolysis for
hydrogen production, Rajeshkhanna
et al. (https://doi.org/10.1039/D4NR01196A)
developed two non-precious metal
materials, each designed to efficiently
catalyze the hydrogen evolution and
oxygen evolution reactions. Alongside
water electrolysis for hydrogen pro-
duction, CO2 reduction is considered a
promising method for decarbonization
and sustainable energy conversion. This
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themed collection highlights the devel-
opment of novel nanocatalysts for
efficient CO2 electroreduction (https://
doi.org/10.1039/D4NR01416B, https://
doi.org/10.1039/D4NR01484G, https://
doi.org/10.1039/D4NR01173B, https://
doi.org/10.1039/D4NR00909F, https://
doi.org/10.1039/D4NR00340C and
https://doi.org/10.1039/D4NR01082E).
The development of efficient oxygen
reduction electrocatalysts contributes to
advancing energy sustainability (https://
doi.org/10.1039/D3NR06647A and
https://doi.org/10.1039/D4NR02425G).
The electrochemical reduction of nitrate
to ammonia is a promising catalytic
pathway for both ammonia production
and nitrate reuse from industrial
wastewater (https://doi.org/10.1039/
D4NR01625D).

In the field of photocatalysis and
photoelectrochemical applications,
Waclawik et al. (https://doi.org/10.1039/
D4NR00885E) review light modulation
techniques to improve product selectivity
in photocatalytic reactions. Yang et al.
(https://doi.org/10.1039/D4NR01040J)
discuss advancements in utilizing
quantum dots for hydrogen production.
Additionally, Seh et al. (https://doi.org/
10.1039/D4NR02342K) highlight recent
developments in photocatalysts, empha-
sizing strategies to enhance their per-
formance in environmental remediation
and energy conversion. Aizenberg and
van der Hoeven et al. (https://doi.org/
10.1039/D4NR01200C) discovered that
the placement of nanoparticles in gold-
loaded titanium dioxide (Au/TiO2)
inverse opals influences both photo-
catalytic activity and stability. Efficient
hydrogen production and ammonia
generation can be achieved by adjusting
the structure (https://doi.org/10.1039/
D4NR01194E) and electronic state
(https://doi.org/10.1039/D4NR01787K
and https://doi.org/10.1039/D4NR00868E)
of the photocatalyst. In addition, con-
structing photocatalysts with porous
frameworks is an effective strategy for
enhancing photocatalytic efficiency
(https://doi.org/10.1039/D4NR00779D,
https://doi.org/10.1039/D4NR00608A
and https://doi.org/10.1039/D4NR00391H).
The development of efficient catalysts is

also essential for photoelectrochemical
applications (https://doi.org/10.1039/
D4NR00949E).

In addition to electrocatalysis and
photocatalysis, this themed collection
also encompasses research on thermal
catalysis. Frenkel et al. (https://doi.org/
10.1039/D4NR01396D) identify the
origins of reaction-driven aggregation
and fragmentation of atomically dis-
persed Pt catalysts on ceria supports
during the high-temperature water gas
shift reaction. Machida et al. (https://doi.
org/10.1039/D4NR01156B) found that
the nanoscale smoothness of the Pt
capping layer increases the TOF more
than tenfold compared to a rough Pt
surface in the ammonia oxidation reac-
tion. Pomposo et al. (https://doi.org/
10.1039/D4NR01261E) developed hetero-
bimetallic single-chain nanoparticles as
soft nanocatalysts, facilitating one-pot
alkyne semihydrogenation and olefin
double oxidation reactions in
N-butylpyrrolidone at room temperature,
without the need for toxic solvents like
N,N-dimethylformamide. The study by
Behrens et al. (https://doi.org/10.1039/
D4NR02025A) demonstrated that Ni,Fe
catalysts supported on zirconia and ceria
exhibited higher activity than those on
magnesia in CO2 hydrogenation, attribu-
ted to changes in metal–support inter-
actions resulting from differences in
reducibility and oxygen vacancy for-
mation. Nanomaterials derived from
metal–organic frameworks are also
regarded as an effective strategy for
developing efficient catalysts (https://doi.
org/10.1039/D4NR01185F). Additionally,
constructing composite nanocatalysts
can effectively enhance catalytic activity,
selectivity, and stability (https://doi.org/
10.1039/D4NR01184H, https://doi.org/
10.1039/D4NR01211A, https://doi.org/
10.1039/D4NR01222D, https://doi.org/
10.1039/D4NR01116C, https://doi.org/
10.1039/D4NR01409J, https://doi.org/
10.1039/D4NR00948G, https://doi.org/
10.1039/D4NR01243G, https://doi.org/
10.1039/D4NR00358F and https://doi.
org/10.1039/D3NR06518A).

Finally, this themed collection high-
lights emerging applications of nanoca-
talysis in biocatalysis, biosensing, and

batteries. Negishi et al. (https://doi.org/
10.1039/D4NR02506G) report the design
and construction of a novel (3,6)-con-
nected two-dimensional silver cluster-
assembled material, used for the first
time as a support matrix for enzyme
immobilization. Tong et al. (https://doi.
org/10.1039/D4NR01208A) reveal the
unique pH-dependent behaviors of iron
oxide nanozymes and ascorbic acid,
paving the way for macrophage-based
cell therapy. Wang et al. (https://doi.org/
10.1039/D4NR00521J) developed a
nanoengineering approach for highly
sensitive vanillin detection using neody-
mium niobate nanospheres on functio-
nalized carbon nanofibers. In addition,
developing efficient catalysts for both
the cathode and anode can significantly
enhance overall battery performance
(https://doi.org/10.1039/D4NR00518J,
https://doi.org/10.1039/D4NR02385D
and https://doi.org/10.1039/D4NR02418D).

This themed collection represents the
diverse, interdisciplinary nature of nanoca-
talysis research, from theoretical insights
to practical applications in energy, sustain-
ability, and health. We hope the collection
provides readers with a comprehensive
overview of recent progress and future
directions in nanocatalysis. We extend our
thanks to all contributing authors,
reviewers, and the editorial and production
staff for their support in bringing this
themed collection to fruition.
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