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Compliance with good research data management practices means trust in the integrity of the data, and it is
achievable by full control of the data gathering process. In this work, we demonstrate tooling which bridges
these two aspects, and illustrate its use in a case study of automated battery cycling. We successfully
interface off-the-shelf battery cycling hardware with the computational workflow management software

AiiDA, allowing us to control experiments, while ensuring trust in the data by tracking its provenance. We
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Accepted 20th March 2024 design user interfaces compatible with this tooling, which span the inventory, experiment design, and
result analysis stages. Other features, including monitoring of workflows and import of externally

DOI: 10.1039/d3ta068899 generated and legacy data are also implemented. Finally, the full software stack required for this work is
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1 Introduction

“Trust is good, control is better”. This apocryphal quote, often
attributed to Lenin, might be interpreted as a guiding principle
for good research data management (RDM) practices. The
“trust” aspect of RDM is codified in guidelines for RDM," and
implemented by overarching standards® as well as grassroots
approaches, such as small data.®* However, the “control” aspect
of RDM has a large rift between the computational and exper-
imental domains. Researchers in computational materials
science tend to focus on implementing code interoperability*
and developing workflow management tools.>® On the other
hand, experimental researchers are (still) tackling digital-
isation, mainly via electronic lab notebooks*' and instrument
automation."**
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made available in a set of open-source packages.

Meanwhile, it is clear that data management plans should be
designed to cover all data generated in cross-disciplinary
projects,** by treating experimental as well as computational
data on an even footing from an RDM point of view. Such
integrated solutions could then build on the advantages gained
from implementing FAIR data principles,” for instance enabling
automated materials discovery using existing tools,>* often
interfaced with machine learning models*® in a distributed
fashion.'® Indeed, several frameworks capable of storing and
distributing such integrated data are being built.*”*°

However, a bridge between “trust” and “control”, compatible
with both computational and experimental data, yet targetting
off-the-shelf instrumentation and reusing common software
tools, currently does not exist. For instance, the ARChemist
project focuses on sample synthesis*® and sample preparation,*
and while its powder-bot used for X-ray diffraction analysis is
interfaced with common diffractometers,?* it is not driven as
part of a computational workflow. However, in the A-Lab
project, automated X-ray diffraction driven by machine
learning algorithms has been demonstrated,” driven by
bespoke, but open-source software. Similarly, in the Matter Lab,
large language model-driven synthesis and wet chemistry has
been successfully demonstrated.” However, the orchestration
of such tasks remains “tailored to specific setups or [is not yet]
implemented for real-world synthesis”.?® It also relies on the use
of custom orchestrators.

In order to increase adoption and interoperability of RDM
practices, the use of common, established, open-source
orchestrators or workflow manager softwares (WFMSs) is, in
our view, crucial. In a previous work, Stricker et al. demon-
strated a proof-of-concept control of a bespoke experimental
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Fig.1 Overview of the software stack used in the current work, and the key concepts and processes. All software shown in the above diagram is
available via the BIG-MAP app store at https://big-map.github.io/big-map-registry/, under an open-source license.

set-up”® using an established computational WFMS pyiron.” In
this work, we present how our autonomous robotic battery
materials research platform, Aurora,*” has been integrated with
the WFMS AiiDA,**® originally designed for computational
science.” In contrast with the previous works discussed above,
here a WFMS is taught to interact with an off-the-shelf poten-
tiostat using a shim around vendor-supplied libraries, exploit-
ing existing plugin architectures. Such integration enables the
coupling of experiments with computational workflows using
digital twins. The ultimate goal for the Aurora platform, devel-
oped as part of the Battery Interface Genome-Materials Accel-
eration Platform (BIG-MAP),* is to link physics- and data-based
modelling with automated orchestration of battery assembly
and battery cycling experiments, forming a closed-loop
sequence. Additionally, we discuss the development of user
interfaces that are familiar to experimentalists but compatible
with computational tools, implemented with the graphical web
platform AiiDAlab,*" based on AiiDA. Finally, we discuss new
features incorporated into AiiDA, that allow for an automated
supervision of experimental (and computational) tasks during
their runtime. In the following Implementation section, we first
outline the project components and their design philosophy. In
particular, we focus on the elements of our software stack
developed as part of this work. In the Results section, we
present a case study using a range of coin cell batteries built by
an automated coin cell assembly robot, illustrating the user
experience and outlining the applications of our work.

2 Implementation

An overview of the software components, which create our bridge
between trust and control, is shown in Fig. 1. The central pillar is
formed by AiiDA,® providing a base of trust by tracking the prove-
nance of data, collating it on a per-sample basis into digital twins,
which are further discussed below. In this implementation, the
human-facing aspect of control is provided by AiiDAlab,** allowing
users to design their studies via a web-based user interface, which
can be rapidly prototyped and easily deployed using modular
components. Data visualisation and reporting can be implemented
via AiiDAlab. Examples of user interfaces, developed for battery
materials research and packaged into the AiiDA-Aurora plugin, are
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presented in the Case study section, below. Automated control via
external modules, using e.g. machine learning approaches, as well
as AiiDA's interface for computational tasks, are core and well
established features of the AiiDA ecosystem, and are discussed
elsewhere.®

2.1 Tomato: automation without the pain!

The link to the experimental instrumentation is provided by
interfacing AiiDA with our instrument automation platform,
tomato, developed for this purpose. The Python-based tomato
includes a job scheduling daemon, device drivers, and a user
front-end utility called ketchup. The usage patterns of this
library are modelled after common scheduling tools, such as
Sun Grid Engine, OpenPBS or Torque, familiar to users of high-
performance computing. We refer the keen reader to the online
project documentation for further details.f However, other
instrument automation platforms could be interfaced with
AiiDA by writing an appropriate scheduler plugin.

Within tomato, the user supplies a definition of devices,
which represent and track the state of the controlled instru-
ments. Such devices can be arbitrarily combined and addressed
into pipelines. For instance, in a multi-channel potentiostat,
each channel of the device can be addressed independently
using the appropriate pipeline. The experimental protocols
(YAML or JSON files) can be either written and submitted
manually, or deployed by AiiDA. The protocols are interpreted
into a language understood by the hardware by tomato's drivers.
This implies the development of ontologies, or vendor-agnostic
domain specific languages; see e.g. ref. 32 and 33 for current
efforts in heterogeneous catalysis and in the battery commu-
nities, respectively. The parsing of the raw instrumental data
into a FAIR data format, understood and stored in AiiDA, is
performed automatically and periodically by the FAIR data
parser yadg.** Currently, tomato supports a wide range of Bio-
Logic potentiostats, using a Python-based shim around
a vendor-supplied DLL. An extension of the driver library is
currently underway.
section of the documentation  at:

i See the tomato

https://dgbowl.github.io/tomato/master/usage.html

usage

This journal is © The Royal Society of Chemistry 2024
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2.2 Towards digital twins

One key conceptual difference between the computational and
experimental domains concerns the objects under study, ie. the
“samples”. In the computational domain, a sample is an immu-
table concept: a set of atomic coordinates forming an input of an
electronic structure calculation, or a set of boundary conditions for
a combustion problem. The outcome of the calculation is usually
a property of the original sample (e.g. the energy of that structure,
or the adiabatic flame temperature for that mixture and state);
sometimes, a new sample may be generated by the calculation (e.g:
a relaxed geometry, or an outlet mixture composition and its state).
Each of these samples can be easily and separately represented by
a digital twin, and each of those samples can be reused in further
computations, if necessary.

In experimental research, this ideal situation is complicated by
sample history. For samples representing a single object (e.g. a coin
cell battery), an experiment irreversibly changes the sample, so that
the sample corresponding to the original state is no longer avail-
able for new experiments; only the sample corresponding to the
current state is. Formally, it is simpler to consider this state-change
to be always present, even for so-called “non-destructive” testing
methods. Approaches for extending the digital twins and prove-
nance graphs to allow for such bookkeeping within AiiDA are being
trialled. However, in the current work, the unmodified AiiDA
provenance model is used, with sample history tracked using
timestamps.

Another complication arises from the practicalities of
experimental lab work: the state of the sample might be
modified by user intervention outside of the scope of an AiiDA
workflow. The current gold standard in lab practice is to track
all activities in the lab in a lab book (supplemented by a lab
inventory management system), which then contains the full
authoritative sample history. An additional difference with
respect to the computational domain is that storage of experi-
mental samples can also affect the sample state. In the case of
reactive materials used in battery research, keeping track of
storage parameters such as the composition of the atmosphere
and duration of storage is part of best practice.*® Therefore,
interfaces between electronic lab notebooks and WFMSs, and
their wider adoption, are necessary to fully address this issue;
such an interface will be discussed in a further work.

Finally, it can be argued that the necessary features of a digital
twin include (i) a multi-physics or data driven model of an object,
accompanied by (ii) real-world data related to the object.*® Indeed,
in the NASA definition of digital twins, the modelling forms the
backbone into which the measured (“sensor”) data is integrated.*”
Furthermore, the model should be able to (iii) self-adjust using the
measured data in a closed-loop sequence.* In the current work, we
focus on the integration of data from automated experiments into
AiiDA's provenance, i.e. the second of the three requirements in the
above definition of a digital twin. As for the other two require-
ments, as shown in Fig. 1, AiiDA already allows for closing the loop
by integration of machine learning models with methods used in
computational chemistry (e.g. in metallurgy® or catalysis®). Simi-
larly, the ability to carry out computational tasks based on

This journal is © The Royal Society of Chemistry 2024
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experimental data attached to an AiiDA digital twin has been
recently demonstrated* using the AiiDAlab web platform.

2.3 Automated task supervision

Computational tasks in a workflow are generally considered as
atomic transactions: the WFMS submits the task to the calcu-
lator via a scheduling software, which then reports back to the
WEFMS (via polling, i.e. periodic querying for new data, or by
directly pushing any updates) once the calculator task is
completed (successfully or with an error). This model is often
imposed by necessity of dealing with computational scheduling
software, which may not make intermediate results available to
the WFMS for performance reasons. This also encourages
splitting complex tasks (e.g. during geometry optimisation
using energy gradients computed by finite differences) into
smaller pieces (e.g. single point energy calculations of the dis-
placed geometries) for optimal use of resources via task
scheduling, with any decision making (e.g. evaluation against
convergence criteria, and, if necessary, a next optimisation step)
carried out at the workflow level.

The same approach could, in principle, be applied to experi-
mental tasks. For instance, if we were to design a workflow for
testing the degradation in the capacity of a coin cell battery, we may
opt to split it into individual charge/discharge cycles, and evaluate
the capacity of each completed cycle against the criteria at the
workflow level. This is shown in Fig. 2(a), where the workflow
consists of a pretreatment step (“formation cycles”), the main task
which is split into its components (“charge/discharge cycles”), and
finally any further steps (here a “safety discharge” to allow safe
sample disposal). However, from an experimental point of view,
this is often impractical, as the decision making process intro-
duces an undefined delay between the individual cycles, which
might be problematic in distributed systems with many parallel
workflows. In particular, prolonged storage of the coin cell at
a state of high charge or deep discharge may affect the cell
performance,” introducing an unacceptable degree of uncertainty
into the workflow.

Instead, we introduce the concept of job monitoring, and its
implementation in AiiDA as of version 2.2.0, schematically
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Fig. 2 Example coin cell battery workflows, showing (a) a linear
workflow with a decision making step after every charge/discharge
cycle, and (b) a workflow with continuous cell cycling accompanied by
a decision making via job monitoring.
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Fig. 3 A stylised representation of typical provenance graphs of
experiments submitted from AiiDA. Starting in the upper-right of the
figure, the cell assembly robot output is first parsed into a digital twin of
a battery sample, represented by the green Data node. This node,
along with other Data nodes containing the protocol(s), the tomato
settings, the job monitoring settings, the tomato code, and tags, are
provided to AiiDA to construct a CyclingSequenceWorkChain node
(orange). This CyclingSequenceWorkChain then submits each
protocol in order, represented by the BatteryCyclerExperiment nodes.
If requested, a job monitoring function (represented by the magnifying
lens) will inspect, at a set interval, a snapshot of the experimental data
produced by tomato, and terminate the experiment according to the
specified criteria. Final results, regardless of termination by the job
monitor, are parsed by AiiDA into an ArrayData node, assigned as an
output of the BatteryCyclerExperiment, along with references to the
remote working directory, the local working directory, and the
retrieved raw data file. Example provenance graphs obtained from real
data using AiiDA's verdi plot utility are shown in the ESI;t further
information about AiiDA's provenance model is available online.§

shown in Fig. 2(b). In this case, the main cell cycling task is
submitted as a single task, programmed to perform the
maximum desired number of cycles. In parallel to the submis-
sion of the main task, AiiDA can be instructed to perform job
monitoring of that task. This is achieved by periodically polling
the main task for data, which, based on a pre-defined criterion,
allows the main task to continue or triggers its early termina-
tion. Of course, the measured data of the terminated tasks is
retrieved by AiiDA, with the task completion status (including
any decision by the job monitor) annotated accordingly, as
shown in the provenance graph in Fig. 3 and S1.7 Further steps
in the workflow, such as the safety discharge step shown here,
are not affected.

The latter approach has several advantages. The decision
making of the monitoring job is intentionally kept simple, with the
only options being to abort the main task or to do nothing (i.e.
continue the task). However, the decision criteria can be of arbi-
trary complexity, and can depend on quantities computable only
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after the main task is started. For instance, a common decision
point in battery testing is when the capacity of the investigated
battery cell drops below 80% of the capacity obtained from the first
cycle after pre-treatment (i.e. after “formation cycles”).*>* The exact
first cycle capacity is not known a priori. While this criterium can
easily be implemented using a job monitoring (Fig. 2(b)), it would
require modification of the linear workflow shown in Fig. 2(a), as
the first cycle is treated differently from every successive cycle.
Perhaps the biggest advantage is in saving valuable instrument
time: defective or poorly performing battery cells can be detected
automatically and their study curtailed without human interven-
tion. In view of battery research labs, where parallel cycling of
several hundreds of cells is becoming common, the instrument
time saved by job monitoring quickly becomes appreciable. Alter-
natively, the feature can be used to detect “steady states” in
heterogeneous catalysis' and thus accelerate catalytic testing
workflows.*

The disadvantages of such approach are minor, but have to
be considered. First, periodic data snapshots have to be avail-
able to AiiDA; this feature is implemented within tomato, but
other schedulers might not support it. Second, in its current
implementation, the job monitoring is performed on the same
server where AiiDA is running, placing additional load on the
hardware and increasing network traffic by repeated transfer of
data snapshots; these issues can be alleviated by reducing the
polling frequency of the monitoring job and by checksumming
of snapshots. Finally, the monitoring job may abort the main
task at an arbitrary point in its execution, leading to a poorly
defined state of the sample (e.g. a state of partial charge); to
account for this, judicious planning of the overall workflow is
required, in our example achieved by implementing a final
safety discharge task which is always executed.

Full description of monitoring jobs is included in the AiiDA
documentation, available online.q Currently any Python func-
tion matching a defined function signature can be used as the
decision criterium; we hope to provide a domain-specific library
of such functions in the future to enable reproducible testing.
Note that all quantities known to AiiDA can also be accessed
from within this Python function, including data obtained from
previous or parallel steps and workflows.

2.4 Incorporating data from external sources

In most cases, labs undergoing automation and digitalisation
will have “legacy” data, or will continue to generate data from
external sources, i.e. out-of-band of the automation process that
is being implemented. Such out-of-band data was also gener-
ated as part of the current work. However, by incorporating
appropriate data parsing routines into our FAIR data parser
yadg,** we are able to ingest such out-of-band data into AiiDA
and collate it under the appropriate digital twins. As shown in
Fig. S2,T the provenance graph of fully in-band experiments can
be mimicked in this way. As will be shown below, the ingested

9 See the “How to monitor (and prematurely stop) a calculation” entry in the
Guides AiiDA  documentation,
https://aiida.readthedocs.io/projects/aiida-core/en/v2.2.0/howto/run_codes.html#
how-to-monitor-and-prematurely-stop-a-calculation

How-To section  of available at:

This journal is © The Royal Society of Chemistry 2024


https://aiida.readthedocs.io/projects/aiida-core/en/v2.2.0/howto/run_codes.html#how-to-monitor-and-prematurely-stop-a-calculation
https://aiida.readthedocs.io/projects/aiida-core/en/v2.2.0/howto/run_codes.html#how-to-monitor-and-prematurely-stop-a-calculation
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3ta06889g

Open Access Article. Published on 03 April 2024. Downloaded on 7/12/2024 7:31:10 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

out-of-band data can be post-processed using the same tooling
as the in-band data. Currently, the provenance graph for such
out-of-band experiments may be incomplete. Solutions for
automating and/or facilitating the reconstruction of the rele-
vant metadata, which may be currently missing, will be explored
in a future work, provided the required data is available.

3 Case study

In the following sections, we present the user interfaces developed
for battery research and packaged in the AiiDAlab-Aurora plugin.
Installation instructions are available in the ESI,} as well as in the
project documentation. || The sections of the case study are laid out
following the chronology of a typical study. To better illustrate the
above implementation, we have prepared several batches of coin
cell batteries using the coin cell assembly robot, and studied the
degradation in their discharge capacity as a function of upper cut-
off voltage over the first 50 cycles. A video illustrating the interac-
tion with the interfaces shown in the screenshots is available on
the BIG-MAP app store, see the ESIT for details.

3.1 Materials

The coin cells are assembled into a CR2032 form factor using the
coin-cell assembly robot, co-developed with Chemspeed Technol-
ogies, which is part of the Aurora platform. Batches of 32 cells can
be routinely assembled. We use a 15 mm diameter graphite elec-
trode as anode (1.2 mA h ¢cm™?, Customcells), and a 14 mm
diameter nickel-rich lithium nickel manganese cobalt oxide
(NMC622) electrode as cathode (1.0 mA h em ™2, Customeells). As
electrolyte, we use 100 pl of a 1 M solution of lithium hexa-
fluorophosphate (LiPFg) in a mixture of ethylene carbonate (EC)
and ethyl methyl carbonate (EMC) in a 3:7 ratio (Solvionic),
respectively. The electrolyte is dispensed using a gravimetric
dispensing unit (Chemspeed Technologies GDU-V) and also
contains 2 wt% of vinyledene carbide (VC) to aid formation of
a passivating solid-electrolyte interphase on the graphite electrode.
Glass fiber separators (Whatman) are used to separate the elec-
trodes; compatibility of the assembly robot with polyolefin sepa-
rators (e.g. Cellgard) is being improved. Based on the cathode areal
capacity and its electrode area, the corresponding target “recipe”
capacity of each cell is 1.54 mA h.

The assembled cells are manually loaded into a set of 16-
channel potentiostats (BioLogic MPG2). They have to be marked
as available for use by tomato, by matching the cell name with
the physical channel of the potentiostat, and marking the
channels as ready.

3.2 Creation of digital twins

Once the cells are assembled, the output file of the cell assembly
robot can be directly processed using the Inventory — Samples

§ See the “Provenance Implementation” entry in the topics section of AiiDA
documentation, available at: https://aiida.readthedocs.io/projects/
aiida-core/en/v2.2.0/topics/provenance/implementation.html

|| See the “Installation Guide” entry of the AiiDAlab-Aurora plugin, available at:

https://aiidalab-aurora.readthedocs.io/en/latest/installation/index.html

This journal is © The Royal Society of Chemistry 2024
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Samples
~ Import samples from robot output

Select  Noselection
Description
Batch Manufacturer

C. process C. date:

» Filters

NHC622
NHC622
NHC622
NHC622

230511-1 1M LiPF6
3 iPF6

» Groups

id  Creation Date

Sub-batch

Creation
Process

Cat.Tot  Cat.NetMass  CNominal. C Recipe.

An. Tot. Mass  An. Net Mass
(9) @) Mass (g) (@) (mAh) (mAh)

1 20230511 Createdbyrobot 00278 00178 00171 00091 14560 15400

4 20230511 Createdbyrobot 00279 00179 00176 0009 1.4560 15400

Fig. 4 The Inventory — Samples component of the AiiDAlab-Aurora
user interface, showing a sample creation widget for importing the
output files from the cell assembly robot, the sample selector, and
sample metadata. A sub-batch can be defined via multiple selection
and the text field shown.

tab of the AiiDAlab-Aurora interface, shown in Fig. 4. The digital
twins of the individual cells (i.e. samples) are prepared from this
data, and, for now, stored within AiiDAlab. In the future,
a direct connection to electronic lab notebooks is planned,
which will allow for the complete sample history and other
relevant information to be fetched, as necessary. They are
pushed into AiiDA at the workflow submission stage, see below.
As the assembly robot contains a balance, the masses of the
anode and cathode in each individual cell are known, and the
nominal cell capacity (denoted “C Nominal” in Fig. 4) can be
recorded alongside the “recipe” capacity (1.54 mA h). In prin-
ciple, this nominal cell capacity can be used to determine the
charge and discharge rates, which may be especially important
in cells with a large variation in electrode mass. However, in the
current work, we use the “recipe” cell capacity to set the charge
and discharge rates. The electrode masses are well behaved
(with mean masses of 28.12(19) mg and 18.05(33) mg for the
cathodes and anodes of the first batch (230511), and
28.05(27) mg and 17.86(37) mg for the cathodes and anodes of
the second batch (231012), respectively). For an overview of the
individual electrode masses of the assembled cells, see the ESL.}

3.3 Battery cycling protocols

The two batches of 32 coin cells have been tested according to
the following workflow, with each step corresponding to a single
protocol:

e Protective charge. The cell is charged up to 2.5 V at C/10,
and then kept at a constant voltage of 2.5 V for 15 minutes, or
until the charging current drops below C/20. This is followed by
a cell relaxation (open circuit) for 6 hours.

e Formation cycles. Three charge-discharge cycles, with
a charge to an upper cut-off voltage of 4.2 V at C/10, and a lower
cut-off voltage of 2.5 V during discharge at D/10.

J. Mater. Chem. A, 2024,12,10773-10783 | 10777
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Inventory

Protocols
~ Create custom protocol

Protocol name: Technique: | CC (constant_current) v

new_protocol

Sequence Label | cC_t

1-cc1 Device: | MPG2 v

Technique: Controlled current technique, with optional voltage
and current limits

Time: | 3600 i
Step current: | C/3 i
Record every dr. | 30 i
Record every dE. | 0.1 i
Irange | 100 mA v i
Erange | +50V v i
Number of cycles: | 0 i
Al | False v i
Exit when limits reached? | False v i
Maximum voltage: | 43 s i
Minimum voltage: i
Maximum current i

Minimum current i

B

» Filters

€C_3 (constant_current)
time = 4000.0 s

current = 1C T
record_every_dt = 30.0 s
record_every dE = 0.1 V
I_range = 10 mA

E_range = +-5.0 V
n_cycles = 0

is_delta = False
exit_on_limit = False
limit voltage max = 4.2 V

Fig.5 The Inventory — Protocols component of the AiiDAlab-Aurora
user interface. The widget for building protocols out of electro-
chemical techniques, as well as the list of previously created protocols,
are shown.

e Long-term cycling. Each batch of 32 cells is split into 4 sub-
batches of 8 cells each, with different upper cut-off voltages.
Each cell is cycled for up to 700 charge-discharge cycles, with an
upper cut-off voltage of 4.2, 4.4, 4.6, or 4.8 V during charge at 1C,
and a lower cut-off voltage of 2.5 V during discharge at 1D.

e Capacity monitoring. The long-term cycling of cells is
stopped for any cell for which the capacity in discharge has
dropped below 80% of the first cycle capacity (in discharge), in
at least 3 consecutive cycles.

o Safety discharge. Discharge at 1D with a lower limit of
2.5 V.

The above workflow is loosely based on the Base Cycling
Protocol specified in BIG-MAP Deliverable 8.1.** The individual
protocols can be designed using the Inventory — Protocols
section of the AiiDAlab interface (see Fig. 5), which is modelled
after the protocol builder in BioLogic's EC-Lab software. Each
protocol can be saved in AiiDAlab for later re-use, and can be
submitted as an individual task, or as an AiiDA workflow, see
below.

3.4 Reproducible workflows

Having described our samples and defined our protocols, the
Experiment component (shown in Fig. 6) can be used to
assemble the experimental workflow. The Select samples widget
(shown in Fig. S37) allows for filtering and efficient selection of
multiple samples in order to submit batches of experiments
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Experiment
» Select samples
» Select protocols

~ Configure tomato/monitoring

Protocol: | long_term_cycling_42V v

Verbosity: | INFO v
Monilored job?
Frequency (s): | 7200

Check type: | discharge_capacity v

Threshold: | 0.8
Consecutive: | 3

Saved to long_term_cycling_42V1

» Generate input

Unlock when done?
Experiment group label: | Ent

Select code: | ketchup-0.2rc2 v n

Fig.6 The Experiment component of the AiiDA-Aurora user interface.
The sample and protocol selection widgets are collapsed, see the ESIT
for their expanded versions. The widget for configuration of job
monitoring is shown.

easily. The Select protocols widget (shown in Fig. S4t) allows for
arranging individual protocols into a linear workflow. The
configuration of the job monitoring is done on a per-protocol
basis, using the interface shown in Fig. 6. Here, the user is
asked to select the monitoring frequency, the monitoring
function used (here: capacity in discharge), and supply any
parameters required by the monitoring function (in this case
the capacity threshold of 80% and number of consecutive cycles
for which the condition has to be met).

Finally, the user is given the option to review the input and
provide an arbitrary text label for this group of experiments,
defaulting to the submission timestamp (shown in Fig. S57).
After selecting the appropriate “code” (i.e. an executable
accessible by AiiDA on a local or networked computer, in this
case the ketchup utility, which is part of tomato), the batch of
experiments can be submitted. AiiDAlab then passes the spec-
ifications of the cells and protocols to AiiDA, which creates the
appropriate nodes and digital twins, and manages the data
retrieval without further action by the user.

For the purposes of this case study, one cell batch is
submitted for testing using AiiDAlab (i.e. using the full software
stack shown in Fig. 1), while a second batch is submitted
manually, using an equivalent testing protocol implemented
using the GCPL technique in EC-Lab software (version 11.48),
representing a set of out-of-band data.

3.5 Accessing cycling results

The results of the experiments are retrieved automatically by
AiiDAlab, once the user enters the Results interface. Several pre-
configured plots are available for analysis of single cells. As
shown in the top panel of Fig. 7, all raw data is available (here,
cell voltage and instantaneous current) as a function of time.
However, an arbitrary amount of data post-processing can be
implemented during the ingestion of the raw data archives into
AiiDA. This is shown in the bottom panel of Fig. 7, where the
derived data, in this case the cell capacity in discharge

This journal is © The Royal Society of Chemistry 2024
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Fig. 7 The Results interface, showing two plots of results of a single
experiment. The upper panel shows the raw data (cell voltage Eye and
current [ as a function of time). The lower panel shows a plot of pro-
cessed data (capacity in discharge as a function of cycle number).

(calculated from an integral of the discharge current over time)
is plotted as a function of cycle number (determined using
changes in the sign of the supplied/drawn current).

The data ingested into AiiDA is, by necessity, standardised.
This means the whole experime