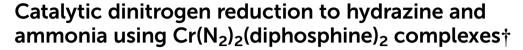
Dalton Transactions

COMMUNICATION


View Article Online
View Journal | View Issue

Cite this: *Dalton Trans.*, 2024, **53**, 6496

Received 8th March 2024, Accepted 25th March 2024 DOI: 10.1039/d4dt00702f

rsc.li/dalton

Charles H. Beasley, page Olivia L. Duletski, page Ksenia S. Stankevich, page Navamoney Arulsamy page and Michael T. Mock page 4

The synthesis, characterization of trans-[Cr(N₂)₂(depe)₂] (1) is described. 1 and trans-[Cr(N₂)₂(dmpe)₂] (2) catalyze the reduction of N₂ to N₂H₄ and NH₃ in THF using SmI₂ and H₂O or ethylene glycol as proton sources. 2 produces the highest total fixed N for a molecular Cr catalyst to date.

Motivated by the desire to understand and control the challenging multi-proton, multi-electron reaction of N2 reduction to NH₃, researchers have intensely studied the reactivity of molecular transition metal dinitrogen complexes.1 Well-defined molecular systems offer a high degree of electronic and structural control to regulate chemical reactivity of N₂. When combined with effective strategies to form N-H bonds, such as proton-coupled electron transfer (PCET) reagents, i.e. SmI₂ and a proton source, tens-of-thousands of equivalents of NH3 can be generated.⁴ The valuable information obtained from these studies includes the identification of viable M-N_rH_v reaction intermediates from spectroscopic data that can be used to delineate the mechanistic steps of a putative catalytic cycle. Such studies can aid in the understanding of the mechanistically complex biological N2 fixation processes carried out by nitrogenase enzymes,5 as well as heterogeneous Haber–Bosch catalysts.⁶

Group 6 N_2 complexes bearing monodentate phosphine ligands, especially with Mo and W, were among the first molecular systems to generate stoichiometric quantities of N_2 -derived NH_3 from protonolysis reactions with strong acids nearly 50 years ago. Recently, a renaissance of examining structurally similar $[M(N_2)_2(P-P)_2]$, (M = Mo, W; P-P = diphosphine) systems has begun, elevating these simple complexes as catalysts for N_2 reduction to NH_3 , or other remarkable reac-

phonium salts as H+ sources were required for turnover, and

this system was not catalytic using SmI2.16 Herein we prepared

and characterized trans-[Cr(N2)2(depe)2] (1), and report cata-

lytic N2 reduction to NH3 and N2H4 with 1 and trans-[Cr

 $(N_2)_2(dmpe)_2^{17}$ (2) $(dmpe = Me_2PCH_2CH_2PMe_2)$ at room temp-

erature using SmI2 and ethylene glycol or H2O as proton

tions such as cleavage of the N₂ triple bond.⁸ Masuda and coworkers reported spontaneous N≡N bond cleavage upon one-

electron oxidation of $trans-[Mo(N_2)_2(depe)_2]$ (depe =

Et₂PCH₂CH₂PEt₂) to form [Mo(N)(depe)₂]⁺. Chirik and coworkers developed a photocatalytic strategy to form NH₃ from

[Mo(N)(depe)₂]⁺ and H₂.¹⁰ Electrocatalytic N₂ fixation with Mo

and W-phosphine complexes was described by Peters and co-

sources. Vigorous stirring of yellow *trans*-[CrCl₂(depe)₂]¹⁸ (1-Cl) in THF with excess Mg powder under a N₂ atmosphere for 24 h furnished 1 as a dark red solid in 70% yield. Isolation of 1 allowed for a comparison of the structural and spectroscopic data with 2 that was reported in 1983.^{17a} The structure of 1, determined by single crystal X-ray diffraction, shows Cr with four phosphorus atoms of the chelates on the equatorial plane and two axial end-on bound N₂ ligands, Fig. 1, panel a. The average Cr–N, Cr–P, and N \equiv N bond distances are 1.904 \pm 0.005 Å, 2.334 \pm 0.007 Å, and 1.104 \pm 0.004 Å, respectively. The corresponding Cr–N, and Cr–P, bond distances in 2 (see ESI†),

workers using a tandem catalysis approach. Nishibayashi and co-workers showed simple Mo-phosphine complexes catalyzed N_2 reduction to NH_3 using SmI_2 and various proton sources. While these examples highlight new discoveries using $[M(N_2)_2(P-P)_2]$ ($M=M_0$, W) complexes, catalytic N_2 reduction with analogous Cr compounds are limited. Recent reports highlighted the utility of molecular Cr complexes using a variety of ligand architectures for N_2 activation, activation, functionalization, or catalytic N_2 silylation. However, molecular Cr complexes that catalyze the direct reduction of N_2 to NH_3 are rare. In 2022, Nishibayashi and co-workers reported a Cr complexes bearing a PCP pincer ligand that catalyzed direct N_2 reduction to NH_3 and N_2H_4 at -78 $^{\circ}C$ to rt. KC_8 and phos-

^aDepartment of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA. E-mail: michael.mock@montana.edu

^bDepartment of Chemistry, University of Wyoming, Laramie, WY, 82071, USA

[†] Electronic supplementary information (ESI) available: Experimental procedures, crystallographic details, and additional spectroscopic and electrochemical data. CCDC 2330754 (1) and 2330755 (2). For ESI and crystallographic data in CIF or other electronic format see DOI: https://doi.org/10.1039/d4dt00702f

Dalton Transactions Communication

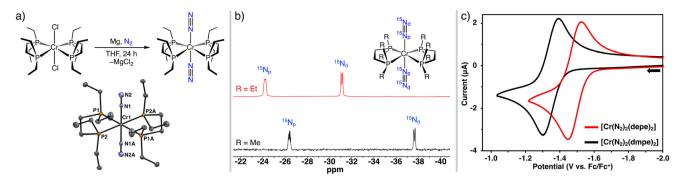


Fig. 1 (a) Synthesis and molecular structure of 1. Thermal ellipsoids are drawn at 50% probability. Hydrogen atoms are omitted for clarity. Crystals of 1 contain two molecules per asymmetric unit with comparable metric parameters; only one molecule is shown. Selected bond distances (Å) and angles (°): Cr1-N1 = 1.9081(10); N1-N2 = 1.1003(14); Cr-P1 = 2.3343(3); Cr-P2 = 2.3249(3). Cr2-N3 = 1.9008(10); N3-N4 = 1.1069(14); Cr-P3 = 2.3425(3); Cr-P4 = 2.3346(3). P1-Cr1-P2 = 81.650(9); P3-Cr2-P4 = 81.583(10); P1-Cr1-N1 = 89.25(3); P2-Cr1-N1 = 90.21(3); P3-Cr2-N3 = 89.29(3); P4-Cr2-N3 = 90.59(3). (b) P3-Cr2-N3 = 90.59(3). (c) P3-Cr3-N3 = 90.59(3). (d) P3-Cr3-N3 = 90.59(3). (e) P3-Cr3-N3 = 90.59(3). (e) P3-Cr3-N3 = 90.59(3). (e) P3-Cr3-N3 = 90.59(3). (f) P3-Cr3-N3 = 90.59(3). (e) P3-Cr3-N3 = 90.59(3). (f) P3-Cr3-N3 = 90.5

are slightly shorter at 1.8862(17) Å, and 2.294 \pm 0.005 Å, and the N \equiv N distance is 1.110(2) Å.¹⁹ The ligand bite angles for 1 and 2, *i.e.* P1-Cr-P2, are 81.6° and 83.5°, respectively, and the P-Cr-N angles are near 90°.

The 31 P{ 1 H} NMR spectrum of **1** in THF-d₈, displays a singlet at 79.9 ppm (68.8 ppm for **2**) consistent with four magnetically equivalent P atoms. Complexes **1** and **2** were characterized by 15 N NMR spectroscopy to augment the cumulative library of tabulated 15 N NMR data of phosphine-supported group 6 N₂ complexes. 13h The 15 N₂-labelled complexes **1**^{15N} and **2**^{15N}, were prepared by mixing the respective Cr-N₂ complexes in THF-d₈ under 1 atm 15 N₂. The 15 N NMR spectra were collected after mixing for 24 h. The 15 N{ 1 H} NMR spectra contain two resonances; a doublet ($J_{\rm NN}$ = 7.0 Hz) and a multiplet (~2.5 Hz 31 P coupling) (**1**^{15N}: -31.1 ppm, -24.2 ppm, and **2**^{15N}: -37.6 ppm, -26.4 ppm), assigned as the distal (N_d) and proximal (N_D) nitrogen atoms, respectively, (Fig. 1, panel b). 13i

Cyclic voltammetry (CV) experiments established the redox behaviour of the Cr(0)-N2 complexes. Voltammograms were recorded using a glassy carbon working electrode at 0.1 V s⁻¹ in THF. The voltammogram for each complex displays a reversible, one-electron $Cr^{I/O}$ wave with the half-wave potential $(E_{1/2})$ of -1.49 V and -1.34 V (vs. $Cp_2Fe^{+/0}$) for 1 and 2, respectively (Fig. 1, panel c). The electrochemically reversible Cr^{I/O} couples indicate N2 dissociation does not occur upon oxidation to Cr(1) during the CV experiments. The reversibility of the waves for 1 and 2 contrasts other cis- or trans-[Cr(N2)2(P4)] complexes measured by CV that exhibit quasi-reversible or irreversible $Cr^{1/0}$ waves due to rapid N_2 loss upon oxidation. ^{13b,c,i} In the current study, an irreversible anodic wave was assigned to the $\mathrm{Cr^{II/I}}$ redox feature at E_{pa} = -0.48 V and E_{pa} = -0.63 V, for 1 and 2, respectively, due to N2 dissociation at more positive potentials, (Fig. S17 and S18 ESI†). The CV results suggest a one-electron chemical oxidation to form trans- $[Cr(N_2)_2(P-P)_2]^+$ should be possible; however, our attempts to isolate such a species have been unsuccessful. Owing to the more electronrich metal centre of 1, the $\nu_{\rm NN}$ band in the infrared spectrum

at 1906 cm⁻¹ (THF) appears at lower energy than the $\nu_{\rm NN}$ band for 2 at 1917 cm⁻¹ (THF).

Complexes 1 and 2 were examined as catalysts for the direct reduction of N_2 to NH_3 and N_2H_4 . The catalysis studies were performed in THF at room temperature using the PCET reagent SmI_2 and ethylene glycol and/or water as proton donors. A typical catalytic run used 583 equiv. SmI_2 , 1166 equiv. ROH per Cr centre and was stirred for 48 h. Quantification of NH_3 , N_2H_4 and H_2 (see ESI for details†) products assessed the total fixed N generated in each reaction. Selected catalytic data are listed in Table 1 (see ESI for all tabulated results†).

Analysis of the catalysis results provides insights about the performance of 1 and 2 under identical reaction conditions. 2 afforded more total fixed N than 1 in all catalytic trials. For example, 1 generated up to 5 equiv. of NH3 and 5 equiv. N2H4 per Cr center using ethylene glycol as the proton donor after >100 h. Under identical conditions, 2 produced up to 16 equiv. NH₃ and 10 equiv. N₂H₄ in 48 h. Furthermore, ethylene glycol worked more effectively as the proton donor affording higher total fixed N than using H2O. The deliterious effect of H2O on catalysis was noted in reactions with 2 using ethylene glycol as the primary proton source. As the amount of H₂O added to the reaction increased, NH₃ production declined, while the N₂H₄ formed stayed relatively constant. We postulate the Cr complexes may simply be more prone to degradation in the presence of H2O. Separately, 2 was treated with 500 equiv. H2O or ethylene glycol in THF-d₈. Free dmpe from complex degradation appeared more rapidly using H₂O, as assessed by ³¹P NMR spectroscopy. Catalysis performed with 2 under an atmosphere of $^{15}N_2$ afforded $^{15}NH_4^+$ as a doublet at 7.1 ppm (J_{15N-1H} = 71 Hz) in the ¹H NMR spectrum, identifying ¹⁵N₂ as the source of ¹⁵NH₃.

Catalytic trials using trans-[CrCl₂(dmpe)₂] (2-Cl) and ethylene glycol generated comparable amounts of NH₃ and N₂H₄ as using 2 as the precatalyst. 1-Cl did not catalyze N₂ reduction, affording only 1 equiv. of NH₃ and N₂H₄ per Cr center. SmI₂

Communication **Dalton Transactions**

Table 1 Selected Cr-catalyzed N2 reduction experiments

$$N_2$$
 + SmI₂ + ROH $\frac{[Cr] \text{ cat.}}{\text{THF. rt}} \rightarrow NH_3 + N_2H_4 + H_2$

Entry	Cr cat.	ROH	NH ₃ equiv./Cr ^a	N_2H_4 equiv./ Cr^b	Total fixed N	Time (h)
1	None	(CH ₂ OH) ₂	0	0	0	48
2	1	$(CH_2OH)_2$	3.7 ± 0.9	1.4 ± 0.8	$4.9^{h} \pm 1.5$	48
3	1	$(CH_2OH)_2$	4.6 ± 0.6	4.0 ± 1.7	$8.6^{h} \pm 2.1$	100
4^c	1	H_2O	1.4	0.7	2.1	48
5^d	1	H_2O	3.2	0.6	3.8	28
6	1-Cl	(CH ₂ OH) ₂	1.2	0.9	2.1	48
7	2	$(CH_2OH)_2$	14.6 ± 1.6	5.9 ± 2.9	$20.5^{h} \pm 3.8$	48
8^e	2	$(CH_2OH)_2$	6.2 ± 0.5	6.4 ± 0.8	$12.6^{h} \pm 0.3$	48
9^f	2	$(CH_2OH)_2$	4.4 ± 0.9	6.6 ± 0.6	$11^h \pm 0.4$	48
10^g	2	$(CH_2OH)_2$	1.1	5.7	6.8	48
11^d	2	H_2O	5.1	5.9	11	3
12	2-Cl	$(CH_2OH)_2$	13.5 ± 2.8	5.9 ± 0.6	$19.4^{h} \pm 3.4$	48

Experiments performed using 0.6 µmol catalyst in 15.0 mL THF at 25 °C under 1 atm N2, with 583 equiv. of SmI2, and with 1166 equiv. ROH unless otherwise specified. ^a Determined by acidification and NH₄ quantification using ¹H NMR spectroscopy (see ESI†). ^b Determined by color-metric *p*-dimethylaminobenzaldehyde method (see ESI†). ^c 1000 equiv. H₂O/Cr. ^d 10 000 equiv. H₂O/Cr. ^e 25 ppm of H₂O. ^f 250 ppm of H₂O. ^g 583 equiv. (CH₂OH)₂, 583 equiv. H₂O. ^h Average of two or more trials. H₂ quantification by gas chromatography, values are tabulated in ESI.†

and ethylene glycol may be ineffective at reducing the Cr(II) center of 1-Cl to Cr(0) where N2 is strongly activated. Treatment of 2-Cl with 2 equiv. SmI2 and 2 equiv. ethylene glycol rapidly generated 2 (see ESI†). However, the same reaction of 1-Cl and SmI2 with ethylene glycol additive did not form 1 ($E_{1/2} = -1.49$ V, vide supra). 1 or 2 could not be generated from 1-Cl or 2-Cl using excess SmI2(THF) alone (E° of $SmI_2(THF) = -1.41 \pm 0.08 \text{ V}^{20} \text{ vs. Fc/Fc}^+$). A Cr(I) species could be accessible, but N2 activation and subsequent functionalization steps may be moderated at Cr(I), limiting catalysis.

The mixed N₂ reduction selectivity to form NH₃ and N₂H₄ provides preliminary evidence for a catalytic cycle that follows, at least in part, an alternating N₂ reduction mechanism, Fig. 2, bottom. A purely distal N2 reduction pathway, Fig. 2, top, would be selective for NH3 formation. In a 1986 report, the reaction of 2 with CF₃SO₃H was postulated to form a Cr-hydrazido product, [Cr(NNH₂)(dmpe)₂][CF₃SO₃]₂.²¹ A recent study by Wei, Yi, Xi, and co-workers examining early stage N2 functionalization of $[Cp*Cr^{0}(depe)(N_{2})]^{-}$ $(Cp* = \eta^{5}-C_{5}(CH_{3})_{5})$ using a variety of electrophiles (H⁺, Me₃Si⁺, Me⁺) also revealed the selective formation of Cr-hydrazido products, consistent

Alternating Pathway

Fig. 2 Plausible N₂ reduction mechanisms for Cr mediated formation of hydrazine and ammonia.

with a distal pathway. Contrary to these reaction patterns, protonation studies of related cis- or trans-[Cr(N2)2(P4)] complexes we examined using strong acids or H+/e- reagents, as well as the catalytic Cr[PCP] system¹⁶ generated NH₃ and N₂H₄. ^{13c,i,15a} Considering all these examples, and that N₂ reduction mechanisms are sensitive to reaction conditions, (i.e. identity of the H⁺ and e⁻ reagents, solvent, temperature), a hybrid N₂ reduction pathway²² where the third and fourth N-H bonds are formed at the proximal N atom of a Cr-hydrazido intermediate, Fig. 2, middle, cannot be excluded for the current systems. Further studies are warranted to understand the N2 reduction pathways with Cr.

The proclivity for N₂ ligand substitution in 1 and 2 was evaluated as a metric that could reflect catalyst stability and influence catalytic performance. We examined reactions of 1 and 2 with CO to assess the rate of ligand exchange, Fig. 3. Ligand substitution in these six-coordinate complexes is expected to be a dissociative process; a result of Cr-N or Cr-P bond dissociation. Wilkinson, Hursthouse, and co-workers noted 2 did not react with 7 atm CO for several hours except under u.v. irradiation (in light petroleum) to form cis-[Cr(CO)₂(dmpe)₂] (cis-2-CO). This account was surprising, and the unreactive nature toward N2/CO exchange seemed uncharacteristic of a

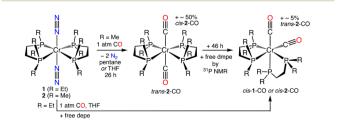


Fig. 3 Ligand exchange reactions of 1 and 2 with CO display different reaction profiles.

complex with terminally bound N₂ ligands. We reacted 2 with 1 atm CO at 25 °C in pentane or THF without u.v. irradiation and monitored the reaction by in situ IR spectroscopy, or ³¹P NMR spectroscopy (see ESI†). In both solvents the reaction was slow, but 2 was not unreactive. In THF, after 26 h ~85% of 2 converted to a ~1:1 mixture of cis-2-CO and trans-[Cr $(CO)_2(dmpe)_2$ (trans-2-CO). trans-2-CO converts to ~95% cis-2-CO (and \sim 5% free dmpe) after additional 46 h by 31 P NMR spectroscopy. In THF, 1 converts directly to cis-[Cr(CO)₂(depe)₂] cis-1-CO ($\nu_{\rm CO} = 1829$, 1768 cm⁻¹) in ~3 h by in situ IR spectroscopy (see ESI†). The vastly different rates of N₂/CO ligand exchange underscore the greater kinetic stability of 2 toward Cr-L dissociative processes that could ultimately curtail catalyst deactivation pathways (i.e. ligand loss) improving catalyst performance for N₂ reduction compared to 1.

In conclusion, we present a contemporary advancement in the use of $trans-[Cr(N_2)_2(P-P)_2]$ complexes (1 and 2) for direct catalytic reduction of N2 to form NH3 and N2H4 using the PCET reagent SmI2 and H2O and/or ethylene glycol as proton donors. A new complex, trans-[Cr(N2)2(depe)2], was presented herein. Despite having similar electronic structures, we posit 2 is a better catalyst than 1 (using the presented conditions), due to a less negative Cr^{I/O} redox couple and greater kinetic stability from Cr-L dissociative processes.

Author contributions

Dalton Transactions

C. Beasley, investigation, methodology, writing, editing; O. L. Duletski, investigation; K. S. Stankevich, investigation; N. Arulsamy, investigation, writing; M. T. Mock, conceptualization, methodology, supervision, writing, editing, funding acquisition.

Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgements

The authors thank Dr. Bernhard Linden and Mathias Linden for LIFDI-MS analysis. This material is based upon work supported by the National Science Foundation (NSF) under Grant No. CHE-1956161 and CHE-2247748. Support for MSU's NMR Center has been provided by the NSF (Grant No. NSF-MRI: CHE-2018388 and DBI-1532078), the Murdock Charitable Trust Foundation (2015066:MNL), and MSU's office of the Vice President for Research and Economic Development. The authors gratefully acknowledge financial support for the X-ray diffractometer from the NSF (CHE-0619920) and a Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health (Grant # 2P20GM103432).

References

- 1 (a) Y. Tanabe and Y. Nishibayashi, Chem. Soc. Rev., 2021, **50**, 5201–5242; (b) Y. Tanabe and Y. Nishibayashi, Coord. 214783; (c) Rev., 2022, 472, Transition Metal-Dinitrogen Complexes: Preparation and Reactivity, ed. Y. Nishibayashi, Wiley-VCH, Weinheim, 2019.
- 2 M. J. Chalkley, M. W. Drover and J. C. Peters, Chem. Rev., 2020, 120, 5582-5636.
- 3 (a) Y. Ashida, K. Arashiba, K. Nakajima and Nishibayashi, Nature, 2019, 568, 536-540; (b) N. G. Boekell and R. A. Flowers II, Chem. Rev., 2022, 122, 13447-13477; (c) E. A. Boyd and J. C. Peters, J. Am. Chem. Soc., 2022, 144, 21337-21346.
- 4 Y. Ashida, T. Mizushima, K. Arashiba, A. Egi, H. Tanaka, K. Yoshizawa and Y. Nishibayashi, Nat. Synth., 2023, 2,
- 5 C. Van Stappen, L. Decamps, G. E. Cutsail III, R. Bjornsson, J. T. Henthorn, J. A. Birrell and S. DeBeer, Chem. Rev., 2020, **120**, 5005-5081.
- 6 C. M. Goodwin, P. Lömker, D. Degerman, B. Davies, M. Shipilin, F. Garcia-Martinez, S. Koroidov, J. Katja Mathiesen, R. Rameshan, G. L. S. Rodrigues, C. Schlueter, P. Amann and A. Nilsson, Nature, 2024, 625, 282-286.
- 7 J. Chatt, A. J. Pearman and R. L. Richards, Nature, 1975, 253, 39-40.
- 8 (a) F. A. Darani, G. P. A. Yap and K. H. Theopold, Organometallics, 2023, 42, 1324-1330; (b) S. J. K. Forrest, B. Schluschass, E. Y. Yuzik-Klimova and S. Schneider, Chem. Rev., 2021, 121, 6522-6587; (c) C. E. Laplaza and C. C. Cummins, Science, 1995, 268, 861-863.
- 9 A. Katayama, T. Ohta, Y. Wasada-Tsutsui, T. Inomata, T. Ozawa, T. Ogura and H. Masuda, Angew. Chem., Int. Ed., 2019, 58, 11279-11284.
- 10 (a) S. Kim, Y. Park, J. Kim, T. P. Pabst and P. J. Chirik, Nat. Synth., 2022, 1, 297-303; (b) M. T. Mock, Nat. Synth., 2022, 1, 262-263.
- 11 P. Garrido-Barros, J. Derosa, M. J. Chalkley and J. C. Peters, Nature, 2022, 609, 71-76.
- 12 Y. Ashida, K. Arashiba, H. Tanaka, A. Egi, K. Nakajima, K. Yoshizawa and Y. Nishibayashi, Inorg. Chem., 2019, 58, 8927-8932.
- 13 (a) A. J. Kendall and M. T. Mock, Eur. J. Inorg. Chem., 2020, 1358-1375; (b) M. T. Mock, S. Chen, R. Rousseau, M. J. O'Hagan, W. G. Dougherty, W. S. Kassel, D. L. DuBois and R. M. Bullock, Chem. Commun., 2011, 47, 12212-12214; (c) M. T. Mock, S. Chen, M. O'Hagan, R. Rousseau, W. G. Dougherty, W. S. Kassel and R. M. Bullock, J. Am. Chem. Soc., 2013, 135, 11493-11496; (d) M. Fritz, S. Demeshko, C. Würtele, M. Finger and S. Schneider, Inorg. Chem., 2023, 26, (e) W. H. Monillas, G. P. A. Yap, L. A. MacAdams and K. H. Theopold, J. Am. Chem. Soc., 2007, 129, 8090-8091; (f) W. H. Monillas, G. P. A. Yap and K. H. Theopold, *Inorg.* Chim. Acta, 2011, 369, 103-119; (g) X. Wang, Y. Wang, Y. Wu, G. X. Wang, J. Wei and Z. Xi, *Inorg. Chem.*, 2023, 62,

18641–18648; (*h*) M. T. Mock, A. W. Pierpont, J. D. Egbert, M. O'Hagan, S. Chen, R. M. Bullock, W. G. Dougherty, W. S. Kassel and R. Rousseau, *Inorg. Chem.*, 2015, 54, 4827–4839; (*i*) J. D. Egbert, M. O'Hagan, E. S. Wiedner, R. M. Bullock, N. A. Piro, W. S. Kassel and M. T. Mock, *Chem. Commun.*, 2016, 52, 9343–9346; (*j*) I. Vidyaratne,

J. Scott, S. Gambarotta and P. H. M. Budzelaar, Inorg.

Communication

Chem., 2007, 46, 7040-7049.

- 14 (a) J. Yin, J. Li, G. X. Wang, Z. B. Yin, W. X. Zhang and Z. Xi, J. Am. Chem. Soc., 2019, 141, 4241–4247; (b) G. X. Wang, X. Wang, Y. Jiang, W. Chen, C. Shan, P. Zhang, J. Wei, S. Ye and Z. Xi, J. Am. Chem. Soc., 2023, 145, 9746–9754; (c) G. X. Wang, Z. B. Yin, J. Wei and Z. Xi, Acc. Chem. Res., 2023, 56, 3211–3222; (d) Z. B. Yin, B. Wu, G. X. Wang, J. Wei and Z. Xi, J. Am. Chem. Soc., 2023, 145, 7065–7070; (e) T. Shima, J. Yang, G. Luo, Y. Luo and Z. Hou, J. Am. Chem. Soc., 2020, 142, 9007–9016; (f) Y. Kokubo, K. Tsuzuki, H. Sugiura, S. Yomura, Y. Wasada-Tsutsui, T. Ozawa, S. Yanagisawa, M. Kubo, T. Takeyama, T. Yamaguchi, Y. Shimazaki, S. Kugimiya, H. Masuda and Y. Kajita, Inorg. Chem., 2023, 62, 5320–5333
- 15 (a) A. J. Kendall, S. I. Johnson, R. M. Bullock and M. T. Mock, J. Am. Chem. Soc., 2018, 140, 2528-2536;
 (b) M. C. Eaton, B. J. Knight, V. J. Catalano and

- L. J. Murray, Eur. J. Inorg. Chem., 2020, 1519–1524; (c) J. Li, J. Yin, G. X. Wang, Z. B. Yin, W. X. Zhang and Z. Xi, Chem. Commun., 2019, 55, 9641–9644.
- 16 Y. Ashida, A. Egi, K. Arashiba, H. Tanaka, T. Mitsumoto, S. Kuriyama, K. Yoshizawa and Y. Nishibayashi, *Chem. – Eur. J.*, 2022, 28, e202200557.
- 17 (a) G. S. Girolami, J. E. Salt, G. Wilkinson, M. Thornton-Pett and M. B. Hursthouse, *J. Am. Chem. Soc.*, 1983, 105, 5954–5956; (b) J. E. Salt, G. S. Girolami, G. Wilkinson, M. Motevalli, M. Thornton-Pett and M. B. Hursthouse, *J. Chem. Soc.*, *Dalton Trans.*, 1985, 685–692.
- 18 D. M. Halepoto, D. G. L. Holt, L. F. Larkworthy, G. J. Leigh, D. C. Povey and G. W. Smith, J. Chem. Soc., Chem. Commun., 1989, 1322–1323.
- 19 Structural metrics from XRD data of 2 collected here at 100 K. Data from ref. 17 at 295 K.
- 20 (a) M. L. Kuhlman and R. A. Flowers II, *Tetrahedron Lett.*, 2000, 41, 8049–8052; (b) R. J. Enemærke, K. Daasbjerg and T. Skrydstrup, *Chem. Commun.*, 1999, 343–344.
- 21 J. E. Salt, G. Wilkinson, M. Motevalli and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1986, 1141–1154.
- 22 (a) J. Rittle and J. C. Peters, J. Am. Chem. Soc., 2016, 138, 4243–4248; (b) N. B. Thompson, P. H. Oyala, H. T. Dong, M. J. Chalkley, J. Zhao, E. E. Alp, M. Hu, N. Lehnert and J. C. Peters, Inorg. Chem., 2019, 58, 3535–3549.