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Computer-aided process engineering and conceptual design in energy and chemical engineering has

played a critical role for decades. Conventional computer-aided process and system design generally

starts with process flowsheets that have been developed through experience, which often relies heavily

on subject matter expertise. These widely applied approaches require significant human effort, either

providing the initially drafted flowsheet, alternative connections, or a set of well-defined heuristics. These

requirements not only limit the flexibility of the flowsheet design process, but also make the system

design highly reliant on the engineer’s experiences and expertise. In this study, a novel reinforcement

learning (RL) based automated system for conceptual design is introduced and demonstrated on the

Institute for the Design of Advanced Energy System (IDAES) Integrated Platform. IDAES is an open-source

platform with extensible libraries of dynamic unit operations and thermophysical property models. It

provides the capability of optimizing energy and chemical process flowsheets with state-of-the-art

solvers and solution techniques. The RL approach provides a generic tool for identifying process

configurations and significantly decreases the dependence on human intelligence for energy and

chemical systems conceptual design. An artificial intelligence (AI) agent performs the conceptual design

by automatically deciding which process-units are necessary for the desired system, picking the process-

units from the candidate process-units pool, connecting them together, and optimizing the operation of

the system for the user-defined system performance targets solely according to the reward system, while

the reward system can incorporate user’s experiences and knowledge to advance the training process.

The AI agent automatically interacts with the physics-based system-level modeling and simulation toolset

IDAES to guarantee the system design is physically consistent. This study showcases the application of

the RL-IDAES framework through two demonstration cases. These cases prove the framework’s capability

of designing and optimizing complicated systems with high flexibility at affordable computing costs. To

illustrate, designing the hydrodealkylation of toluene system from 14 candidate process-units yielded 123

feasible designs within 20 hours on a standard PC. Moreover, the framework’s versatility is demonstrated

by the ability to transfer a trained RL model to different training cases, thus enhancing the overall

performance of the reinforcement learning process.

1. Introduction

Computer-aided process engineering and conceptual design
have become an important field that has played a critical role in
chemical engineering and industry.1,2 The widely used computer-
aided process design and process intensification approaches
mostly rely on physics-based, system-level simulations. This means
that the system design flowsheets are mostly user-provided, and
the simulation-based computer-aided design tools provide the
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estimation of the system performance and the optimization for
the specific flowsheet configuration.3–6 The researchers can
adjust the design according to the estimation of the system
performance, and iterate by evaluating multiple potential designs
or process configurations.2,7

The computer-aided system design without a prior determinis-
tic flowsheet is much more challenging.8 The concept of super-
structure optimization is one of the popular procedures that does
not need a specific flowsheet9 but needs a large set of process
alternatives,10,11 and is often used with simplified mathematical
representations of chemical operations. Another popular approach
for non-deterministic flowsheet automated design is the evolu-
tionary modification method. It needs an initial drafted flowsheet,
and this evolutionary modification approach can analyze and
change one or more connections in the flowsheet to improve it,
until no further improvement in the flowsheet can be made.12 The
third widely used automated flowsheet design approach is called
systematic generation, which creates a flowsheet sequentially by
adding units one by one from heuristics. The heuristics are
constructed based on prior knowledge.13 Hence, the widely applied
approaches mentioned above still require significant human
efforts, either providing the initial drafted flowsheet, alternative
connections, or a well-defined heuristics data set. These require-
ments not only limit the flexibility of the flowsheet design, but also
make the system design highly reliant on the engineer’s experi-
ences and expertise.

Machine learning (ML) has developed rapidly in the past
decades and has shown promising advantages in the applications
of reduced order model,14,15 image and video processing,16–19

and natural language processes.20 Among various ML algorithms,
reinforcement learning shows great potential as an alternative to
human beings’ intelligence and creativity,21,22 such as playing
games and self-driving cars. RL focuses on how intelligent agents
should take actions in an environment in order to maximize the
cumulative reward.21 The true advantage of RL is that it does not
need existing training data sets, such as labeled input–output
pairs and/or sub-optimal actions database.21 Additionally, RL is
also flexible in learning from existing labeled examples and then
combined with unsupervised self-learning to accelerate the accu-
mulation of knowledge.23 In recent years, some pioneering efforts
have been made in applying RL to conceptual designs of energy
and chemical systems. Khan et al. used hierarchical reinforcement

learning to search for optimal processing routes for hydrogen
production and steam methane reforming.24,25 Gottl et al.
applied RL to sequentially build synthesis flowsheets with a
specific process problem.26–28

In this study, an RL-based automated conceptual design
approach is introduced and demonstrated by interacting with a
general energy system modeling platform, the Institute for the
Design of Advanced Energy System Integrated Platform (24). The
RL approach significantly decreases the requirements from
human interaction for energy and chemical system design. The
user decides the candidate process-units pool (CPP) from the
IDAES module library, which provides all the available energy and
chemical operations (e.g., phase change, temperature change,
pressure change, etc.) that are allowed to be used in the system.
An artificial intelligence agent can then automatically decide
which process-units are necessary for the desired system, pick
the units from the CPP, connect them together, actively interact
with the environment and optimize the system design for the
user-defined system performance targets. IDAES serves as the
environment to guarantee the system designs are physically
consistent. IDAES provides extensive equation-based models of
unit operations and thermophysical properties, as well as cap-
abilities of optimizing process flowsheets with state-of-the-art
solvers. The interactive framework is named RL-IDAES in this
study. The proposed RL-IDAES framework is designed to be
generic and can be adapted to different energy and chemical
engineering systems, and the user can specify system complexity
and optimization objectives. Two case studies are presented in
this manuscript to demonstrate the capability of the RL-IDAES
and the transferability of the trained AI agent among different
conceptual designs.

2. Methodology

The workflow of the RL-guided energy and chemical systems
design framework (RL-IDAES) is shown in Fig. 1. As the left
portion of Fig. 1 shows, two inputs are defined by the user. The
first one is the process-units pool that is available for RL to
construct system designs. The second one is the user heuristics.
It includes the system raw material feeds, the expected system
products and potential subproducts, and the expectations for

Fig. 1 The workflow of the RL-guided energy and chemical system design framework.
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the desired system, such as higher product flow rate, higher
product purity, higher revenue, lower energy cost, and so on.
The user can also provide additional knowledge, such as certain
predefined connections for the system, which may help the RL
on reducing the search space and increasing the success rate of
system design. These user-predefined connections are optional.
The center core portion of the framework, as shown in Fig. 1, is
the RL training and prediction framework. The RL flowsheet
generator keeps proposing new system designs and sends them
into the reward evaluation part. There are two steps of reward
evaluation. The first step is the fast pre-screen according to
fundamental physics constraints, and the second step is the
system-level modeling, simulation, and optimization in IDAES,
as shown in the two-direction arrow marked in Fig. 1. The
detailed explanations about the reward evaluations are in Sec-
tion 2.1. The RL flowsheet generator receives the reward as the
blue dash line arrow shown in Fig. 1, and proposes new designs
according to the received reward through a trained deep neural
network (DNN). The detailed explanations of how the rewards
are utilized for training the DNN and how the DNN helps on
adjusting and proposing new flowsheets are in Section 2.2. With
adequate training of the DNN, the RL framework can generate a
series of feasible system designs that are physically operational
and meet the user-desired system performance targets.

2.1 Environment feedback for rewards

For constructing the RL framework that is more flexible and
compatible with any potential desired systems, there are no
integrated pre-defined system design rules in the RL AI agent.
The AI agent can connect any outlet to any inlet of the process
units without any direct restrictions. Additionally, the reward
evaluation system and procedure are also not seeable to the AI
agent. What the AI agent can receive and learn from is feedback
reward scores only.

2.1.1 IDAES integrated platform for system-level optimiza-
tion. This work leverages the IDAES Integrated Platform to
evaluate and optimize the configurations proposed by the AI
agent (described in Section 2.2). IDAES is an open-source plat-
form developed by a multi-lab collaboration led by the National
Energy Technological Laboratory (NETL) of the United States
Department of Energy (DOE) to accelerate the design, develop-
ment, and optimization of advanced energy systems.29–31 It is
built on the foundation of an open-source algebraic modeling
environment, Pyomo, and is capable of formulating, initializing
and solving optimization problems within the Python ecosys-
tem while accessing numerous Python libraries for data analy-
sis and visualization.32,33

IDAES includes a large process-unit model library of typical
unit operations such as feeds, products, mixers, splitters, flash
drums, heat exchangers, and stoichiometric reactors (Fig. 2).
The library is continually being updated and includes advanced
energy models such as solid oxide fuel cells, auto-thermal
reforming, air separation units, steam cycle, boiler models,
and steam turbines. Each model provides a set of equations
describing a given operation (e.g., phase change, temperature
change, pressure change, chemical reactions), and every model

and equation is editable and extensible. The user can add, remove
or modify variables and constraints for these unit models. This
level of flexibility allows the RL-IDAES to be applied to a wide range
of conceptual design problems, enabling modelers to develop and
customize the flowsheet to their needs.29

By integrating the extensible model library and advanced
optimization-based approaches, the IDAES platform can be used
for designing novel, large-scale, complex systems with dynamic
optimization under uncertainty. The optimization objective can
be a thermophysical property (e.g., flow rate, temperature,
reaction rate, etc.) or any complex continuous quantification
parameter (e.g., annual revenue, product purity, etc.).

2.1.2 Immediate-reward system with physics constraints.
With the IDAES Integrated Platform, AI agent’s actions can be
converted to draft flowsheets. Ideally, every flowsheet, even
incomplete, is supposed to be evaluated by IDAES simulation
and optimization and then assigned a reward. However, it is
not only difficult but also inefficient to evaluate any infeasible
flowsheet. Feasible energy and chemical systems must follow
some fundamental and general rules or physics constraints.
Based on these constraints, an immediate-reward system or fast
pre-screen process can be built to evaluate draft flowsheets
before sending them to the IDAES. Ten fundamental physics
constraints are considered in the process, as shown in Fig. 3.
For example, Constraint 2 is implemented to avoid repeated
use of one inlet or outlet, and Constraint 10 ensures all
connected units are in one system. These are general rules
desired by any conceptual system design. Each fundamental
physics constraint is associated with a specific penalty. As one
flowsheet goes through the immediate-reward system, it gets
penalties for violating each physics constraint and obtains a
deducted reward. Violating certain physics constraints (e.g.,
Constraints 1 and 2) or connecting one inlet to an inactive
outlet leads building an appropriate flowsheet impossible, thus
triggering the early-termination mechanism, which assigns the

Fig. 2 Common process units in IDAES Integrated Platform.
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flowsheet the minimum reward and ends the iteration/episode.
At the early stage of the training, the agent makes selections
randomly with no bias or information and frequently causes
early terminations, which drives the AI agent to learn to avoid
inappropriate connections in priority.

This immediate-reward system enables the RL-IDAES to
evaluate any incomplete flowsheet; therefore, the flowsheet-
building process doesn’t have to be sequential. As the AI agent
is not learning promising routes to build optimal flowsheets
but learning essential connections, it can handle complex and
large-scale systems with multiple system inlets and recycling
loops. The immediate-reward system also has a mechanism to
control the ‘‘system complexity’’ or how complicated the user
wants the RL-found designs to be. This function is realized by
issuing a ‘‘no action’’ penalty when the agent picks the ‘‘no
action’’ option from the action space. A higher penalty should
encourage the agent to take an ‘‘active’’ option instead of ‘‘no
action’’. Please note that the AI agent is blind to the rules in the
immediate-reward system or the fast pre-screen process. The AI
agent can only receive and learn from feedback reward scores.

2.1.3 Finalized-reward system with IDAES integrated plat-
form. Suppose one flowsheet satisfies all the physics constraints
in Fig. 3. In that case, it is considered a ‘‘complete’’ flowsheet
and will be further evaluated by the IDEAS integrated platform.
IDAES will determine if the flowsheet is feasible (physically
operational) and re-evaluate it with a reward associated with
the optimization objective (e.g., product purity, system revenue,
etc.). In this proposed RL-IDAES framework, IDAES provides two

levels of feedback to the AI agent. One is the feasibility of the
draft system flowsheet through physics-based simulation and
optimization. The second one is the optimization of operational
and property parameters of all the connected process-units to
achieve the optimal system performance with the draft flow-
sheet and the user-desired objective. An infeasible flowsheet will
inherit the evaluation result of the immediate-reward system. A
feasible flowsheet will be assigned the maximum reward, plus
an extra reward for excellent system performance. The case
demonstration section (Section 3) will show more details about
assigning reward to the IDAES flowsheet.

The AI agent takes actions solely according to the reward
system. One thing to be noted is although the proposed RL-
IDAES is an automated conceptual design framework, it can
always incorporate engineers’ knowledge and experiences by
adding them into the immediate-reward or finalized-reward
systems to advance the training process.

2.2 Reinforcement learning algorithm and framework

The sketch of the concept of the RL-guided energy and chemical
system design is shown in Fig. 4(a). The observation comprises
all the energy and/or chemical process-units and their connec-
tions. For example, as shown in Fig. 4(a), the ‘‘Observation 1’’
includes the available process-units. They are raw material feed
#1 (F1), raw material feed #2 (F2), product (P), mixer (M), heater
(H), reactor (R), compressor (C), and flash (FL), as marked in
Fig. 4(a). Please note that the process units shown in Fig. 4(a)
are only for the sake of illustration of the procedure, and
practical observations may include many more process-units.
The user can choose whether certain process-units are active,
which are named the candidate process-units pool in this study.
It means the RL can select a unit in CPP and connect it into the
system. The compressor (C) shown in Fig. 4(a) is edged with the
dotted line, which means this compressor is deactivated by
the user.

Initially, there is no connection between any process-units.
The agent decides an action according to the reward evaluation
of the current observation, such as connecting the raw material
feed #1 to the mixer, as ‘‘Action 1’’ shown in Fig. 4(a). After
‘‘Action 1’’, the current observation is updated to a new observa-
tion, as shown in ‘‘Observation 2’’ in Fig. 4(a). An immediate-
reward system is used to evaluate the connections in ‘‘Observa-
tion 2’’, and assign a reward, which is then sent back to the
agent, as the green dash line shown in Fig. 4(a). The immediate-
reward system and associated evaluation of rewards are dis-
cussed in Section 2.1. Following this procedure, the candidate
process-units can be connected one by one until a fully con-
nected system flowsheet is acquired. Note that it is unnecessary
to use all the units in the CPP for a completed system flowsheet
design, for example, excluding the flash (FL) in Fig. 4(a). The
agent is allowed to do nothing for any step of action, as ‘‘Action
4’’ and ‘‘Action 6’’ are shown in Fig. 4(a). Also, the agent doesn’t
have to build a flowsheet sequentially from system inlets to
system products/exhausts.

At the beginning of training, the agent cannot distinguish
between the correct and incorrect connections and makes

Fig. 3 Physics constraints energy or chemical systems must follow (H, R,
C, F, O in the plot denote heater, reactor, compressor, flash drum and any
other unit).
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random selections with no bias or information, which usually
causes the connected flowsheet to be physically infeasible or far
from the user’s expected system performance. The agent can
learn and improve the decision of selecting the connections
according to the reward system. By tracking the potential
directions of increasing the finalized reward, the agent would
be well trained, and find optimized system flowsheet designs.
Based on this training scheme, the deep Q value network (DQN)
is applied to the RL framework in this study.

2.2.1 Observation data structure and action implementa-
tion. To utilize the DQN to learn, search, and optimize the system
design, the observations and actions are transformed into the
data structure, as shown in Fig. 4(b), which is consistent with the
sketched example in Fig. 4(a). The abbreviations in Fig. 4(b) for
process-unit’s names are the same as the ones defined in
Fig. 4(a). The subscript i and o stands for the inlet and outlet
respectively. The subscript i1, i2, o1, and o2 represent the inlet #1,
inlet #2, outlet #1, and outlet #2 if the process-units have multiple

Fig. 4 Sketch of the concept of the RL-guided energy and chemical system design. (a) the steps shown by the connections of process-units; (b) the
corresponding matrix for DQN inputs and outputs that represent the connections of process-units.
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inlets and/or outlets. The observation is defined as a 2-dimensional
(2D) array. The columns of the array represent all the outlets of the
available process-units, with an additional column representing ‘‘no
action’’, and the rows of the array represent all the inlets of the
available process-units. The raw material feed is considered a
process-unit, but only has one outlet, and no inlet. The system
product and exhaust are also considered process-units, but only
have one inlet, and no outlet. Other functional process-units
should have either one or more inlets/outlets. If one process-
unit is activated by the user, the values in the corresponding
column and row are initialized as 0.5. If one unit is deactivated
by the user, the values in the corresponding column and row are
initialized as 0, as the compressor’s inlet and outlet shown in
Fig. 4(b). The RL agent will move from the top to the bottom row
step by step, connecting the inlet to one of the outlets in
each row.

The action space is a 1-dimensional (1D) vector, and the
elements in this vector represent all the outlets, as shown in
Fig. 4(b). The value in each element is the Q value of picking a
certain outlet. The Q value is defined as

Q = R + g�max(Qnext), (1)

where, R is the immediate reward of taking the action, g is the
decay factor, Qnext is the set of future Q values, and max() selects
the maximum value among the future Q values. More details for
applying eqn (1) are discussed in Section 2.2.2. The action is
picking the process-unit’s outlet with the highest Q value, and
connecting it into the system. According to the 2D array observa-
tion, the DQN can predict the Q values for each action option.
The action is applied to the observation array row by row, as the
red blocks shown in Fig. 4(b). For example, ‘‘Action 1’’ in Fig. 4(b)
shows the ‘‘feed 1 outlet’’ has the highest Q value of 70. Then, the
‘‘feed 1 outlet’’ in the first row in the observation array is picked,
and its value is updated to 1, as the ‘‘Observation 2’’ shown in
Fig. 4(b). This ‘‘row by row’’ strategy reduces the action space size;
otherwise, the action space needs to be equivalent to the observa-
tion array, which will significantly increase the complexity and
difficulty of training the DQN. The ‘‘no action’’ is also one of the
options in the action space, as ‘‘Action 4’’ shown in Fig. 4(b). If
the ‘‘no action’’ is picked, the column ‘‘no action’’ in the
observation array will be updated to 1, as ‘‘Observation 5’’ shows.
This ‘‘no action’’ column in the observation array is critical for
training the DQN. If there is no such column, ‘‘Observation 4’’
and ‘‘Observation 5’’ are the same, and the DQN is confused

about which row should be working on. The values 0, 0.5, and 1,
representing the three statuses (inactive, active and connected),
are selected for two purposes. One is making the values in the
observation matrix between 0 and 1, without further normal-
ization. The other is that the differences among the statuses are
as big as possible, which helps the DQN identify them even after
passing layers of neural networks.

2.2.2 Deep Q value network structure and training. The
DQN is a multi-layer neural network that builds the connection
between observation data and the Q value data, as shown in
Fig. 5. The input for the DQN is the observation array, and the
output from the DQN is the Q value vector. The DQN includes
four convolutional neural network (CNN) layers that extract the
key features from the observation and compress them into a
smaller 3D array. The last convolutional layer is flattened into a
1D array and connected to two fully connected layers. When the
observation array is large, including the convolutional layers
can usually increase the DQN prediction accuracy. If the
observation array is very small, such as smaller than 8 � 8,
the convolutional layers may not be necessary. The observation
array can be flattened, and directly connected to fully con-
nected layers.

Because there are no existing prior system designs and/or
data available to train the DQN, the RL has to generate the draft
designs all by itself, and use these draft designs to train itself.
The main procedures are shown in Fig. 6. Fig. 6 (part 1) records
the raw attempts of connecting process-units. According to the
‘‘Observation’’ in part 1, which is a 2D array as discussed in
Section 2.1.2, an action #3 is selected. This action index can be
randomly picked or predicted by the DQN. A greedy factor e,
whose value is between 0 and 1, is used to control whether an
action is randomly picked or DQN predicted. Before every
action, a random number d, which is between 0 and 1, is
generated. If d 4 e, an action is randomly picked. If d o e,
an action is decided by the DQN prediction. e is gradually
increasing from 0 to 1 with RL training. This means that, at the
beginning of the training, the DQN has limited knowledge or
experience in predicting the correct action, so a random action
is preferred. With the training progress, the action has a higher
and higher probability of being determined by DQN prediction.

An example is shown in Fig. 6 (part 1): the action #3 stands
for the ‘‘mixer outlet’’, and it should be applied on the 4th row of
the observation array, so it is connected to the ‘‘heater inlet’’ and
yields the ‘‘New observation (after action)’’. The ‘‘New observation’’
is then evaluated by a series of physics constraints for fast pre-
screens, then through IDAES system-level modeling and
optimization,29 if the connected system can pass all the fast pre-
screens. The fast pre-screens and the IDAES simulation and
optimization can provide the rewards of this action. For this
sketched demonstration, the reward is 35, as shown in Fig. 6 (part
1). The details about the fundamental physical constraints and
IDAES simulation and optimization are discussed in Section 2.1.
Whether this action is the final step for connecting a system is also
recorded. In this sketched demonstration, it is not the final step
yet, as shown in Fig. 6 (part 1). A process-unit is still available in
the 5th row of the observation array, which is the ‘‘reactor inlet’’.Fig. 5 Sketch of the structure of DQN.
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By repeating the steps in part 1, a large number of raw
attempts are recorded into ‘‘memory’’ as part 2 shown in Fig. 6.
The ‘‘Observation’’ and the ‘‘New observation’’ 2D arrays are
flattened into a 1D array in the ‘‘memory’’. Therefore, all the
necessary data associated with one action is recorded in one row.
The recorded ‘‘memory’’ is not infinitely large and is usually
defined as around 10 000 to 100 000 rows. The new raw attempts
data overwrite the old data in the memory. Because the newer
data usually focuses on the attempts of connection that can get
higher rewards, it is unnecessary to keep the older data, which is
usually more random and less meaningful. This limited ‘‘mem-
ory’’ size can effectively increase the DQN training efficiency.

Usage of all the data in memory to train the DQN, which
could be computationally expensive, is not necessary. After the
RL attempts to construct 10 to 100 system flowsheets, which is
called training interval, the DQN will be trained. A small batch
of ‘‘memory’’ is randomly picked for training. The batch size is
usually defined as 30 times the training interval, defined by the
user from 10 to 100. In the small batch, each row of data needs
to be converted to the Q values, as the steps shown in Fig. 6
(part 3). Both ‘‘Observation’’ and ‘‘New observation’’ arrays are
sent to DQN and DQN* for predicting the Q values. The
structure of the DQN and DQN* are the same, and the para-
meters in DQN* are not trained, but directly copied from DQN
with a delay. The feature of delay is mainly for stabilizing the
RL framework. As shown in the sketch demonstration in Fig. 6
(part 3), the predicted Q values for the 5 action options based
on ‘‘Observation’’ are [5, 50, 17, 20, 5], and the Q values for
‘‘New observation’’ are [40, 12, 10, 15, 5], which is defined as
Qnext. The maximum value in Qnext is 40. In this recorded row,
the action reward is 35. Using eqn (1) with g = 0.5, the new Q
value can be calculated as 35 + 0.5 � 40 = 55. In this recorded
row, the action is 3, therefore this updated Q value 55 only
replaces the value 17 in the 3rd element in the Q vector, and
leaves other values unchanged, as the blue block marked in

Fig. 6 (part 3). The new Q vector then becomes [5, 50, 55, 20, 5].
If the element in the recorded row representing the indicator of
‘‘Final step’’ is ‘‘Yes’’, which means there is no further action
needed, there is no Qnext, and eqn (1) is simplified to Q = reward.
Please note that, the recorded action number is not necessary
the same as the index of the maximum Q value. As shown in this
sketch example in Fig. 6 (part 3), the maximum Q value is 50,
and its index is 2nd, but the recorded action is 3. There are two
reasons that lead to this situation. The first reason is that the
action may be randomly picked when recorded. The second
reason is that the DQN has been updated, and its prediction is
not the same as the ones from the old DQN, when the action
was recorded.

By implementing the calculations in Fig. 6 (part 3), all the data
in the batch memory can be converted to the format of observation
and Q array, as shown in Fig. 6 (part 4). The Root Mean Squared
Propagation (RMSProp) algorithm34,35 is used to optimize the
parameters in DQN, with learning rate a = 0.01. RMSProp is one
of the most popular optimizers for neural networks training, and
provides the balanced performance between robustness and con-
vergence speed. The observation and the Q array, as the inputs and
outputs respectively, are used to train the DQN to update its
parameters. By looping parts 1 to 4, the DQN can be kept updated,
and the recorded system connection should get closer and closer
to the targeted, optimized system design.

3. Results and discussions

Two demonstration case studies are presented in this section to
show how the AI agent solves the conceptual design problem. The
first one is the production of Benzene with Hydrodealkylation
(HDA) reaction, which is discussed in Section 3.1 and named RL-
HDA for short. The second one is the methanol synthesis system,
discussed in Section 3.2 and named RL-methanol for short.

Fig. 6 The steps of preparing data set and training DQN.
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The AI agent takes actions to build flowsheets, runs IDAES
to optimize each flowsheet, and assigns rewards to actions.
Section 3.2 also presents the RL framework’s network transfer-
ability. The RL can reduce computing costs and improve training
performance by loading a trained DQN of the same or a different
system. A few issues mentioned in Sections 3.1 and 3.2 are
resolved with continuing training in Section 3.3.

3.1 Hydrodealkylation of toluene

The RL framework is utilized to design a chemical system to
produce benzene with a hydrodealkylation reaction.36 In this
study, the HDA reaction involves reacting an aromatic hydro-
carbon with hydrogen gas at a high temperature to form
Benzene as follows:

C6H5CH3 + H2 - C6H6 + CH5 (2)

The desired chemical system uses 0.3 mol s�1 of hydrogen,
0.3 mol s�1 of toluene and 0.02 mol s�1 of methane as raw
materials with a temperature of 303.2 K and a pressure of
350 000 Pa. The objective is to develop a flowsheet that maximizes
the Benzene flow rate while achieving the highest Benzene purity.
Typically, such a process requires a dedicated reactor operation to
carry out the conversion step, as well as upstream processes to
bring feeds to reactor conditions and downstream processes for
heat and product recovery. Process optimization typically involves
a tradeoff between operating costs. For example, a process may
use a fired heater to pre-heat the feed stream rather than assum-
ing a colder reactor feed and supplying heat directly to the reactor.
Similarly, a process may utilize a post-reactor expander or cooler
to achieve optimal recovery conditions or assume temperature
and pressure drop in the flash drum itself. By allowing all
reasonable design options, the AI agent accounts for these trade-
offs and lets the algorithm make these decisions.

3.1.1 Initialization and reward assignment. From the
IDAES-provided common process-unit models library (Fig. 2),
2 to 3 of almost every category of the fundamental process-
units, which are commonly used in chemical synthesis system,
are picked as the maximum available unit pool, as listed in the
last row of Table 1. Please note that there is no strict rule for
choosing process-units or not for the maximum available unit
pool. A smaller pool size usually helps the AI agent focus on the
useful process-units. Including too many distracting units
would slow down the AI agent training. In this example, 22
process-units are picked for the maximum available unit pool.
Then, the user can choose to activate or deactivate certain

process-units in this maximum available unit pool to composite
the user-defined candidate units pools. The observation tem-
plate is built accordingly, with 21 rows corresponding to 21
inlets, 22 columns corresponding to 21 outlets and the ‘‘no
action’’ column. The user selects some available units as the
candidate units pool for the AI agent to build with. To test the
robustness of the RL framework, seven different CPPs were
selected to be evaluated. These CPPs consist of 14 to 20 process-
units and are described in Table 1, and are named as HDA-14 to
HDA-20 for short. For example, the HDA-16 contains two feeds,
one product, two exhausts, three mixers, two compressors, two
heaters, one reactor, two flash and one splitter. The flowsheets/
observations are initialized as shown in Fig. 7. 15 rows and 15
columns corresponding to 16 units are initialized as ‘‘active’’
with a value of 0.5 (yellow highlighted). The other spots are
initialized as ‘‘inactive’’ with a value of 0 (green highlighted).

In each iteration or episode, the AI agent will move from the
top to the bottom row, connecting one inlet to one outlet in each
step. There will be five kinds of actions, as shown in Fig. 8.
Different actions will be assigned different rewards ranging from
around �1000 to 5000. The values of rewards are carefully
adjusted to satisfy two main requirements. One is that the rewards
corresponding to a potentially successful system design are sig-
nificant enough to be identified by the AI agent. The second

Table 1 Potential candidate process-units pools for HDA demonstration

No. of units Name Feed Product Exhaust Mixer Compressor Heater Reactor Flash Splitter Cooler Expander

14 HDA-14 2 1 2 2 1 1 1 1 1 1 1
15 HDA-15 2 1 2 2 2 2 1 2 1
16 HDA-16 2 1 2 3 2 2 1 2 1
17 HDA-17 2 1 2 3 2 2 1 2 2
18 HDA-18 2 1 2 3 2 2 2 2 2
19 HDA-19 2 1 2 3 2 2 2 2 2 1
20 HDA-20 2 1 2 3 2 2 2 2 2 1 1
22 (All) 2 1 2 3 2 2 2 2 2 2 2

Fig. 7 Initialized flowsheet when 16 units are selected as CPP.

Paper Energy Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
Se

pt
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 1

0/
17

/2
02

4 
5:

09
:5

4 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3ya00310h


© 2023 The Author(s). Published by the Royal Society of Chemistry Energy Adv., 2023, 2, 1735–1751 |  1743

requirement is that the gradient of the rewards for different
actions is smooth enough that the AI agent can easily track the
direction of improvement. The detailed explanations for the five
kinds of actions (Fig. 8) are listed here:

Case 1: the agent takes an ‘‘inactive’’ action. Anytime the AI
agent steps on an ‘‘inactive’’ spot (the blue spot in row 11), the
action will be assigned the minimum reward plus a penalty
(e.g., �1000 plus �400).

Case 2: the agent takes a ‘‘no action’’ action when ‘‘active’’
spots are in the row. In this case, the action will inherit the
reward of the last action (Rlast) plus a penalty (e.g.,�400). Please
note that the penalty value is adjustable and impacts the system
design complexity.

Case 3: the agent takes a ‘‘no action’’ action if there is no
other available ‘‘active’’ spot in this row. In this case, the action
will inherit the reward of the last action with no penalty.

Case 4: the agent takes an ‘‘active’’ action. In this case, the
incomplete flowsheet at Step 6 (shown in the red dotted line)
will be evaluated by the fast pre-screens. The reward is initialized
at the beginning of the fast pre-screens with a value of 500. As the
incomplete flowsheet violates Constraints 3, 5, 8, and 10, the
initialized reward (500) plus the accumulated penalty (e.g., �700)
will be the final deducted reward (e.g., �200).

Case 5: at the end of each iteration or episode, if the
complete flowsheet satisfies all the physics constraints pre-
screens, it will be sent to IDAES for re-evaluation. As seen in the
black dotted line of Fig. 8, the flowsheet can be solved by

IDAES, and has a feasible solution with a benzene purity of 75%
and flowrate of 0.225 mol s�1. In this example, the reward will
be 5000 plus an extra reward associated with the benzene purity
and flow rate.

3.1.2 RL-IDAES optimization results for the HDA system.
The RL-IDAES framework is utilized for the conceptual design of the
HDA system with different CPPs. The CPPs are listed in Table 1,
each containing 14 to 20 units in the pool. The AI agent attempted
to build the flowsheets with 1 million episodes for each CPP. The
hyper-parameters in this proposed RL model are referenced from
the pioneers’ RL approach,33,35 with further adjustments for this
energy and chemical system design application. The ‘‘greedy factor
e’’, ‘‘learning rate a’’ and ‘‘decay factor g’’ are set with 0.0–0.9, 0.01
and 0.5, respectively. The ‘‘memory’’ size is 20 000 observations/
flowsheets, and the ‘‘training batch’’ size is 3200.

The Deep Q Network includes four convolutional layers
between the observation and the fully connected layers. The
convolutional neural network plays a part in structure compres-
sion, which can be turned on or off. It has been observed that
CNN helps the AI agent find more feasible designs, especially
for large-size CPPs, with reasonable extra computing costs. For
the subsequent studies, ‘‘CNN structure compression’’ is
always turned on. ‘‘System complexity’’ is controlled by the
‘‘no action’’ penalty. It can vary from 1 to 4 with four discrete
‘‘no action’’ penalties. In this section, ‘‘system complexity’’ is
set at the highest level as the authors want the RL to involves as
many units in the design as possible.

Fig. 8 Five kinds of actions. Case 1: ‘inactive’ action; Case 2: ‘no action’ with ‘active’ options; Case 3: ‘no action’ without ‘active’ options; Case 4: ‘active’
action; Case 5: episode end action.
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Seven RL-HDA training cases have been implemented with
seven different CPPs. For each CPP, the RL agent can train from
‘‘zero’’ without loading any pre-trained model, and all the
parameters in DQN are randomly initialized. The results are
shown in Fig. 9, most of which take no more than 20 hours on a
personal desktop. In Fig. 9(a), it shows the RL found thousands
of unique designs passing the pre-screen process, which means
they satisfy all the fundamental physics constraints. Deep blue
bars ‘‘start from 0’’ denote RL results trained from ‘‘zero’’, and
light blue bars ‘‘restore HDA-20’’ represent RL results trained
by loading a pre-trained model with 20 process-units available
in CPP, which will be discussed in Section 3.2.2. Fig. 9(b) shows
the number of unique feasible flowsheets found with each CPP.
Orange bars ‘‘start from 0’’ denote RL results trained from
‘‘zero’’, and yellow bars ‘‘restore HDA-20’’ are for RL results
trained by restoring the pre-trained model, which will be
discussed in Section 3.2.2.

For example, with 14 units in the CPP, the ‘‘start from zero’’
RL found 373 unique flowsheets passing the pre-screen pro-
cess, and 123 are feasible. The feasible/pass-pre-screen ratio is
about 1/3. As the AI agent is highly encouraged to use all the
units in the pool, certain large-size CPPs (e.g., 16 units in Fig. 9)

may confuse the RL framework and may need more training to
learn the strategies of building feasible flowsheets.

Taking HDA-20 as an example, the RL found 1239 pass-pre-
screen flowsheets and 64 feasible ones. Fig. 10(a) shows the
number of pass-pre-screen flowsheets found in the training
process as the blue line and the number of feasible ones as the
red line. In the first 200 000 episodes, the RL struggled to pass
the pre-screen process. After that, it gradually found more and
more unique feasible designs. Most of the flowsheets were
found to involve 18 or 19 units in the designs.

The design objective is to obtain high product-flow-rate and
product-purity HDA systems, and the performances of the 64
feasible flowsheets are shown in Fig. 10(b). With the system
feed of 0.3 mol s�1 toluene, the product flow rate has a
theoretical upper limit of 0.3 mol s�1. In the 64 feasible system
designs, as shown in Fig. 10(b), the highest purity is 99%, and
the highest Benzene flow rate that RL designed is 0.288 mol s�1.
The corresponding highest-purity and highest-flow-rate designs
are shown in Fig. 11(a) and (b), respectively. The flowsheet in
Fig. 11(a) keeps a high volume of Benzene recirculating in the
loops to increase the efficiency of the flash drum and stoichio-
metric reactor to obtain a high-purity product. The second

Fig. 9 RL results for HDA system with different CPPs. (a) the number of flowsheets passing pre-screen; (b) the number of feasible flowsheets.

Fig. 10 RL results for HDA system with 20 units in pool. (a) the number of flowsheets founds within 1 million episodes; (b) the benzene flow rate and
Benzene purity of the 64 feasible flowsheets for HDA-20.
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design in Fig. 11(b) recycles the vapor outlet of ‘‘flash_1’’ to
increase the utilization of system feed to achieve a high product
flow rate. Notably, the core process of the second design
correlates with the configuration reported in the literature as
the best configuration.37 It is noticed that there are some
unnecessary connections in the designs, or certain designs
may be unpractical. One reason is that the RL agent is encour-
aged to use as many process-units as possible. For HDA-20,
certain units may be connected to the system but not influence
the system’s operation. Another reason is in this HDA demon-
stration case, only product flow rate and purity were considered
in the system optimization target; other practical factors, such
as capital cost and annualized revenue, were not counted in the
designing objective. The RL-IDAES allows the user to customize
the design objective. As more practical considerations are added
to the IDAES optimization and the action-reward system, the RL
agent will behave closer to experienced engineers.

3.2 Methanol synthesis system and network transferability

The RL framework is expected to design different energy and
chemical systems while requiring the least knowledge from the
user. In this section, the RL framework is extended to develop a
methanol synthesis system. According to the following reac-
tion, the chemical system produces methanol from syngas.38–40

CO + 2H2 - CH3OH (3)

The desired chemical system has two feeds. One is 2.0 mol s�1

of hydrogen at the temperature of 293.15 K and pressure of
3 000 000 Pa, and the other one is 1.0 mol s�1 of carbon
monoxide at the temperature of 293.15 K and pressure of
3 000 000 Pa. The objective is to maximize the methanol flow
rate while minimizing the unit cost of the product, defined as

the sum of amortized capital cost and operation cost divided by
product volume in moles. Similar to the case of the HDA system
example, the design process for the methanol synthesis system
allows for upstream pretreatment to reactor conditions and
downstream postprocessing for heat and product recovery.

3.2.1 RL-IDAES optimization results for the methanol
synthesis system. Similar to the HDA system example, the same
22 common process-units from the IDAES are made available to
the methanol synthesis system. 14 to 20 of them are selected as
CPPs for the AI agent to build conceptual designs, as listed in
Table 2, and named as Meth-14 to Meth-20 for short. Besides
the all-units (22), Meth-14 and Meth-20 are the same as the
HDA system (HDA-14 and HDA-20). The initialized flowsheet
shares the same size, 21 � 22, as in Fig. 7. Depending on the
user-defined CPP, the selected unit inlets/rows and outlets/
columns are initialized as ‘‘active’’ with a value of 0.5.

The RL-IDAES framework has been utilized to design metha-
nol systems with the CPPs in Table 2. The RL takes 1 million
episodes for each CPP to build the flowsheets. In each episode,
the draft flowsheet will be evaluated by the pre-screens and the
IDAES. The training setups are the same as that of the RL-HDA:
‘‘greedy factor e’’ is increasing from 0.0 to 0.9, ‘‘learning rate a’’
is 0.01, ‘‘decay factor g’’ is 0.5, ‘‘memory size’’ is 20 000 and
‘‘batch’’ size is 3200. For all the implemented training, ‘‘CNN
structure compression’’ is activated and ‘‘system complexity’’ is
set to the highest level to encourage the AI agent to connect as
many process-units as possible.

Seven RL-methanol training cases have been implemented
with the pre-defined CPPs. All the training was completed with
15 hours on a personal computer; the results are summarized in
Fig. 12. Fig. 12(a) shows the RL found pass-pre-screen flow-
sheets. Deep blue bars ‘‘start from 0’’ denote training DQN

Fig. 11 Optimal flowsheets for HDA system with 20 units in pool. (a) product purity = 99.9%, product flow rate = 0.240 mol s�1; (b) product purity =
95.9%, product flow rate = 0.288 mol s�1.
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without loading any pre-trained model, and all the parameters in the
DQN are randomly initialized. Light blue bars ‘‘restore HDA-20’’
denote training results by restoring a DQN model, which was trained
for the HDA system with 20 process-units in CPP. Fig. 12(b) shows
the feasible flowsheets with different CPPs; orange and yellow bars
represent training results without or with loading the pre-trained
DQN model. With 14 process-units, ‘‘start from zero’’ RL found 363
pass-pre-screen and 90 feasible flowsheets; with 15 or 16 units, the
RL can still find hundreds of pass-pre-screen flowsheets, and the
feasible to pass-pre-screen ratios increase to 31% or 41%; with 17 or
18 units, the RL undertook a boost in performance, more than 700

flowsheets passing the pre-screen process and about half of them are
feasible. However, with more units in the pool, the RL can rarely find
feasible flowsheets. This indicates that too many units don’t fit such
a simple reaction system.

Taking the Meth-18 as an example, the RL found 768 pass-
pre-screen and 471 feasible flowsheets within 1 million epi-
sodes, as shown in Fig. 13(a). Most of the feasible designs
involve 15 to 17 units in the system. Their performances are
shown in Fig. 13(b). The x-axis denotes the methanol’s unit
cost, and the y-axis represents the methanol flow rate. The costs
consider the operation and amortized capital costs of certain

Table 2 Potential candidate process-units pools for methanol demonstration

No. of units Name Feed Product Exhaust Mixer Compressor Heater Reactor Flash Splitter Cooler Expander

14 Meth -14 2 1 2 2 1 1 1 1 1 1 1
15 Meth -15 2 1 2 2 2 1 1 1 1 1 1
16 Meth -16 2 1 2 2 2 2 1 1 1 1 1
17 Meth -17 2 1 2 2 2 2 1 1 2 1 1
18 Meth -18 2 1 2 2 2 2 2 1 2 1 1
19 Meth -19 2 1 2 3 2 2 2 1 2 1 1
20 Meth -20 2 1 2 3 2 2 2 2 2 1 1
22 (All) 2 1 2 3 2 2 2 2 2 2 2

Fig. 12 RL results for methanol system with different CPPs. (a) the number of flowsheets passing pre-screen; (b) the number of feasible flowsheets.

Fig. 13 RL results for methanol system with 18 units in pool. (a) the number of flowsheets found within 1 million episodes; (b) the methanol flow rate and
unit cost of the 471 feasible flowsheets for Methanol-18.
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kinds of units. As can be seen, the costs per mole of methanol
range from 0.035 $ per mol to 0.072 $ per mol. Flowsheets with
methanol flow rates lower than 0.55 mol s�1 have been filtered as
‘‘infeasible’’ cases. The methanol flow rates of feasible flowsheets
vary from 0.586 to 0.979 mol s�1. The lowest unit-cost case is in
Fig. 14(a), and the highest-flow-rate case is in Fig. 14(b).

3.2.2 DQN model transferability. The RL framework in this
study intermittently saves the trained DQN model in case the
training process is interrupted. The user can always continue
training the model until acquiring the desired results by
loading the last saved model. Except for loading the trained
model with the same setup, the RL framework can also load a
trained DQN model from a different CPP or even a different
energy and chemical system. The RL framework has a universal
observation template, and initialized flowsheets with different
CPPs share the same size and structure. Available common
process-units for the HDA and methanol synthesis system
designs are the same. Therefore, the RL-methanol case can
load a pre-trained model from the RL-HDA case. If another
energy or chemical system design adopts the same observation
template, trained DQN models from any of these systems can
be transferred to the others. Fig. 9 and 12 show the network
transferability between different CPPs and systems.

Restoring a pre-trained DQN model has proven to improve
the RL’s performance while reducing computing costs. As shown
in light blue bars in Fig. 9(a) and yellow bars in Fig. 9(b), by
restoring the DQN model trained with the 20-CPP for 1 million
episodes (noted as HDA-20), all seven training cases have
increased in performance. For the case with the 20-CPP, the RL
found 16% more pass-pre-screen and 48% more feasible flow-
sheets. For the case with the 14-CPP, the RL found an 8.5 times
increase in pass-pre-screen and feasible flowsheets after restoring

the HDA-20 model. The RL-methanol cases for seven CPPs were
retrained by restoring the same HDA-20 model as well. Results
are shown in Fig. 12(a) and (b) compared to the ‘‘start from zero’’
results. With large-size CPPs (e.g., 17, 18 units in the pool),
restoring a pre-trained model makes significant differences. For
example, with 17 units in the pool, the RL found about 100%
more pass-pre-screen and feasible designs. With other CPPs, one
can still see some improvement in the RL’s performances.

3.3 RL performance improvement by adequate training episodes

For comparing the RL performance fairly for different CPPs and
chemical systems, the training episodes were limited to
1 million in the above sections. In such a situation, a few RL
training cases have relatively poor performances, such as HDA-16,
HDA-20, Meth-19 and Meth-20. For example, fewer pass-pre-
screen or feasible flowsheets were found for HDA-16 than for
HDA-15 or HDA-17. For Meth-20, the AI agent can rarely find a
feasible design within 1 million episodes. This issue can be
resolved by increasing the training episodes. Two example tests
for HDA-20 and Meth-20 were conducted, as shown in Fig. 15. For
the HDA-20 case, with ‘‘greedy factor e’’ fixed at 0.9 and other set-
ups kept the same, the RL training was continued for another 3
million episodes. In Fig. 15(a), the ‘‘moving averaged reward’’ is
plotted against the training episodes as the blue line, and the
number of feasible flowsheets in the training process is plotted as
the red line. The ‘‘moving averaged reward’’ is calculated by
dividing the rewards of pass-pre-screen flowsheets by the num-
ber of episodes the AI agent takes to find them. As can be seen
in the plot, the moving average reward generally increases in the
continuing 3 million ‘episodes’ training. At the same time, the
number of feasible flowsheets rises faster as the training goes
on. The Methanol-20 case continued training for another

Fig. 14 Optimal flowsheets for methanol system with 18 units in pool. (a) product flow rate = 0.892 mol s�1, cost per mole product = 0.035 $ per mol;
(b) product flow rate = 0.979 mol s�1, cost per mole product = 0.051 $ per mol.
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5 million with ‘‘greedy factor e’’ is fixed at 0.9; the results are
shown in Fig. 15(b). One can see that, in the first 4 million
episodes, the RL is struggling to explore the strategies to build
flowsheets. But at the 5th million episodes, it finds the right way
to construct feasible flowsheets. Also, the moving average
reward keeps a generally increasing trend, and the number of
feasible flowsheets keeps rising.

In order to explore the mechanism behind the training
performance improvement, the RL found feasible flowsheets
are analyzed. As presented in Section 3.1, the HDA or methanol
system is denoted by a 21 � 21 matrix. And the matrix contains
441 potential connections. Counting the appearances of each
connection in the RL found flowsheets, the probability distribu-
tion of each connection can be obtained. The probability dis-
tribution function (PDF) of connections for the HDA-20 is shown
in Fig. 16. The PDF of connections for the feasible flowsheets
found within the 3rd million is shown in Fig. 16(a), the PDF of
connections for the feasible flowsheets found in the 4th million

is shown in Fig. 16(b), and their difference is shown in Fig. 16(c).
As marked in Fig. 16(a) and (b) share several peaks, such as at
Connection 66. Connection 66 denotes ‘‘flash_0’s vapor outlet
connects to product_0’s inlet’’. It means the AI agent thought this
connection was necessary for a feasible flowsheet early in the
3rd million episodes. Comparing Fig. 16(a) and (b), one can see
that the peak at Connection 170 in Fig. 16(a) diminishes in
Fig. 16(b), while new peaks at Connections 180, 236, and 260
appear in Fig. 16(b). This indicates in the 4th million episodes’
training, and the RL learned to break the connection from
mixer_2 to heater_1, then build a chain of connections ‘‘split-
ter_1 to heater_1, to StReactor_2, and to flash_1’’. Learning these
changes should help the AI agent to find more feasible designs.

The RL-methanol case experiences a significant improve-
ment in the 5th million episodes. The probability distribution
functions (PDFs) of connections for RL found flowsheets in 4th
million episodes and 5th million episodes are shown in
Fig. 17(a) and (b), respectively. Their difference is shown in

Fig. 15 RL performance as training continuing, blue line denoting reward per episode, red line representing number of feasible flowsheets. (a) for HDA
system with 20 units in pool. (b) for methanol system with 20 units in pool.

Fig. 16 Probability distribution function of connections for HDA system
with 20 units in pool. (a) for feasible flowsheets found within the 3rd million
of episodes; (b) for feasible flowsheets found within the 4th million of
episodes; (c) Difference between (b) and (a).

Fig. 17 Probability distribution function of connections for methanol
system with 20 units in pool. (a) for feasible flowsheets found within the
4th million of episodes; (b) for feasible flowsheets found within the 5th

million of episodes; (c) Difference between (b) and (a).
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Fig. 17(c). The RL has learned to build several essential connec-
tions in the early stage, such as Connection 67, ‘‘flash_0’s liquid
outlet connecting to product_0’s inlet’’. Both Fig. 17(a) and (b)
peak at this connection. PDFs for the 5th million episodes in
Fig. 17(b) have stronger peaks than that of the 4th million
episodes in Fig. 17(a) at Connection 84 and 127. These two
connections denote that mixer_0 integrates with mixer_1 and
mixer_2 to be a four-inlet mixer. It will ensure recycling loops go
upstream of the system. What makes a dramatic change in the
5th million episodes is that the RL breaks Connection 51 and
builds Connection 9, which means it connects flash_1’s liquid
outlet to flash_0’s inlet instead of exhaust_2’s inlet. In other
words, the methanol stream in flash_1’s liquid outlet can go to
flash_0 and then product_0 instead of exhausting the system.

4. Conclusion

Traditional computer-aided process engineering and conceptual
design of energy and chemical systems require lots of expert
human mediation, either providing the initially drafted flowsheet
and/or alternative connections. Typically, selecting and evaluat-
ing feasible system designs relies on the engineer’s knowledge
and experiences. This study proposes a more flexible reinforce-
ment learning-based automated approach for the conceptual
design of energy and chemical processes and automatically
interacting with a general energy system modeling platform,
IDAES. It requests the least knowledge from the user for solving
the conceptual design problem applied to energy and chemical
systems. The IDAES module library provides all the available
energy and chemical process units and corresponding operations
(e.g., phase change, temperature change, pressure change, etc.)
that are allowed to be used in the system. The AI agent auto-
matically selects units from the user-defined CPPs, connects
them to construct flowsheets, and optimizes the system design
according to the user’s desired objective. The AI agent does not
need any integrated pre-defined rule about the system design.
The AI agent only learns from the reward scores provided by the
IDAES simulation and a fast pre-screen evaluation system.

Two demonstration case studies have been implemented.
The RL-IDAES framework has been proven to design and
optimize complicated hydrodealkylation of toluene and metha-
nol synthesis systems with high flexibility at affordable com-
puting costs. For example, 123 feasible designs for the HDA
system with 14-CPP can be found within 20 hours on a PC. The
RL framework can share a universal observation template
among different CPPs or energy and chemical systems. A
trained DQN model can be transferred to other training cases.
Restoring a pre-trained DQN model has proven to improve the
RL’s performance. As demonstrated in Section 3.2.2, the DQN
model trained for the HDA system can be directly used in
methanol synthesis system design and found more feasible
designs with limited training episodes. In some cases, the RL
framework may struggle to learn the strategies for building
feasible flowsheets within the limited 1 million training epi-
sodes, especially for cases with relatively large CPPs. However,

as demonstrated in Section 3.3, with adequate training epi-
sodes, the AI agent can eventually discover the key connections
in the system and discard the distracting connections, signifi-
cantly increasing the number of feasible designs.

Data and code availability

The RL framework code and the two example systems are open-
source available at https://github.com/pnnl/RL-Energy. The
source code for the Institute for the Design of Advanced Energy
Systems is open-source available at https://idaes.org/.

Nomenclature

1D 1-Dimensional
AI Artificial intelligence
C Compressor
CNN Convolutional neural network
CPP Candidate process-units pool
DNN Deep neural network
DOE Department of Energy
DQN Deep Q value network
F Feed
FL Flash
g Decay factor
H Heater
HDA Hydrodealkylation reaction
IDAES Institute for the design of advanced energy

system
M Mixer
ML Machine learning
NETL National energy technological laboratory
P Product
Q Q Value
Qnext Future Q values
R Reactor, reward
RL Reinforcement learning
Rlast Reward of the last action
RL-IDAES RL-Guided energy and chemical systems

design framework
RMSProp Root mean squared propagation
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