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Dearomative cycloaddition is a powerful technique to access sp3-rich three-dimensional structural motifs
from simple flat, aromatic feedstock. The building-up of unprecedentedly diverse polycyclic scaffolds with
increased saturation and stereochemical information having various applications ranging from
pharmaceutical to material sciences, is an essential goal in organic chemistry. However, the requirement
of large energy inputs to disrupt the aromaticity of an arene moiety necessitates harsh reaction
conditions for ground state dearomative cycloaddition. The photochemical requirement encompasses
use of ultraviolet (UV) light to enable the reaction on an excited potential energy surface. The
microscopic reversibility under thermal conditions and the use of high energy harmful UV irradiation in
photochemical manoeuvres, however, constrain their widespread use from a synthetic point of view. In
this context, the recent renaissance of visible light energy transfer (EnT) catalysis has become a powerful
tool to initiate dearomative cycloaddition as a greener and more sustainable approach. The excited
triplet state population is achieved by triplet energy transfer from the appropriate photosensitizer to the
substrate. While employing mild visible light energy as fuel, the process leverages an enormous potential
of excited state reactivity. The discovery of an impressive portfolio of organic and inorganic
photosensitizers with a range of triplet energies facilitates visible light photosensitized dearomative
cycloaddition of various substrates to form sp>-rich fused polycyclic architectures with diverse
applications. The tutorial review comprehensively surveys the reawakening of dearomative

Received 23rd August 2023 " o . . . .
Accepted 12th October 2023 cycloadditions via visible light-mediated energy transfer catalysis in the past five years. The progress

ranges from intra- and intermolecular [27 + 27] to [47 + 27], and ends at intermolecular [27 + 20]
DOI: 10.1039/d35c04421a cycloadditions. Furthermore, the review provides potential possibilities for future growth in the growing

rsc.li/chemical-science field of visible light energy transfer catalysis.

can be overcome, the endothermicity of these reactions makes
these reactions reversible and favors the starting materials

1. Introduction

Rapid generation of molecular complexity from readily avail-
able starting materials is one of the trickiest approaches in
synthetic chemistry. The cycloaddition reactions bring exciting
opportunities in this regard due to their perfect atom economy,
stereospecificity, and single-step operation.”> Aromatic
compounds could, in principle, be ideal reaction partners for
cycloaddition reactions, as they, at least from a topological
point of view, contain requisite ene-components. Furthermore,
the dearomative cycloaddition reactions could be considered an
advanced synthetic and practically rewarding tactic for
producing polycyclic three-dimensional architectures from
widely abundant flat molecules.>* However, the aromatic
stability of these conjugated systems must be broken during
these reactions, which is translated as kinetic and thermody-
namic barriers for these processes.>” Even if the kinetic barrier
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under thermal conditions (Fig. 1A).

Decades of rigorous research have unraveled the panorama
of prospective cycloadditions involving fascinating substrate
activations.® As illustrated in Fig. 1A, the thermal pathway for
achieving dearomative cycloadditions is endergonic. This can
be attributed to the loss of molecular stability from the loss of
aromatic stabilization. The high potential barrier requires the
employment of harsher reaction conditions, which, however,
favors reversibility, thus giving low yields of the desired cyclo-
adduct. Shifting to photochemical routes (Fig. 1B and C) makes
it possible to incite the reactant selectively by judicious choice
of light sources of appropriate wavelengths while leaving the
product intact.” As illustrated in Fig. 1B, a starting material can
be selectively excited when the light energy (hv,) is matched
with the [AG(S;) — AG(So)]sm- Thus, the endergonic cycloadduct
([AG(S1) — AG(So)]product > hv1) would be trapped kinetically, and
the backward thermal retro-cycloaddition reaction can be pre-
vented effectively by negating the principle of microscopic
reversibility, keeping the much lower kinetic barrier in view. In

© 2023 The Author(s). Published by the Royal Society of Chemistry
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(A) Schematic energy profile diagram for thermal
dearomative cycloaddition reaction.

(B) Schematic energy profile diagram for photoch
(direct excitation) dearomative cycloaddition reaction.
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I (C) Sch tic energy profile diagram for photochemical
(energy transfer) dearomative cycloaddition reaction.
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Fig. 1 Schematic energy profile diagram for (A) thermal, (B) UV light-mediated photochemical, and (C) visible light-energy transfer mediated
dearomative cycloaddition reactions. (D) Different modes of the arene—alkene cycloaddition reaction. (E) Simplified photocatalytic cycle. (F)
Schematic mechanism of Dexter energy transfer (EnT). SM = starting material; PS = photosensitizer; ISC = intersystem crossing; Er = AG(T,) —

AG(So).

this regard, the extent of photochemical reactivity for aromatic
compounds ranges from isomerizations, additions, and
substitutions to cycloadditions via direct excitation of the
aromatic chromophore.>'* Based on the orbital symmetry and
mode of connection, the arene-arenophile cycloaddition can be
considered to be of three types: ortho [2 + 2], meta [3 + 2], and
para [4 + 2] (Fig. 1D).2

The foundation for photochemical dearomative cycloaddi-
tions was laid in 1959 with the commencement of the pio-
neering work on classical ortho-cycloaddition by Angus and
Bryce-Smith."* Meta-photocycloaddition was discovered in 1966,
independently by Wilzbach and Kaplan.' Five years after this
unearthing of the meta-variant, the same duo realized the para-
cycloaddition of benzene with olefins forming bicyclo[2.2.2]-
octa-2,5-dienes upon irradiation of their reaction mixture at
254 nm." Bryce-Smith later conducted a detailed investigation
on the orbital symmetry relationships requisite for ortho-, meta-,
and para-cycloadditions of benzene under thermal and photo-
chemical conditions.” In 1982, Houk interpreted frontier
orbital overlap between benzene and ethylene, revealing that
the ortho- and meta-cycloadditions are photochemically
allowed, whereas para-cycloaddition 1is photochemically
forbidden.” This was in total correlation with the well-
established Woodward-Hoffman rule.’® Bryce-Smith, Gilbert,
and Orger raised an open question about the involvement of
singlet or triplet intermediates in the existing reports as

© 2023 The Author(s). Published by the Royal Society of Chemistry

molecular orbital symmetry arguments only allow meta-cyclo-
additions to occur in a concerted fashion if benzene's first
excited singlet state, i.e., from S; benzene (1B2u = particular
concerted process occurring from the lowest excited singlet
state in the system; that is from S;) is involved. Bryce-Smith
showed the interaction between the first excited singlet state,
Le., from S, of arene [1B2u) and an alkene to be symmetry
allowed, whereas the same reaction from the triplet excited
state, ie.,, T, of arene (*°B;, = particular concerted process
occurring from the triplet state in the system; that is from T,)
state was symmetry forbidden.™ Ferree et al. provided evidence
for the occurrence of meta-cycloaddition via the singlet excited
state only under the influence of direct excitation.'” The para-
cycloadduct formation was found to be feasible if either the
reaction took place in a non-concerted manner (independent of
the Woodward-Hoffmann rule) or via the involvement of the
second singlet excited state (B, = particular concerted process
occurring from the second excited-state of benzene) of
benzene.' The selectivity of the type of cycloaddition depends
on the electronic properties of coupling partners engaged in the
process. The Rehm-Weller equation is utilized to draw infer-
ences regarding the reaction mode from the parameters show-
casing the possibilities of electron and charge transfer in the
excited state (eqn (1)).** The free energies (AG*") corresponding
to the charge transfer could be calculated from the given
equation simply by using the oxidation potential of the donor

Chem. Sci., 2023, 14, 12004-12025 | 12005
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E°X(D), the reduction potential of the acceptor E*%(A), and the
excitation energy of the electronically excited species. According
to Mattay, electron-rich and electron-deficient olefin partners
preferentially produce the meta-cycloadduct with benzene given
that AG*T > 1.4-1.6 eV and in other cases, give rise to the ortho-
cycloaddition product. The Weller equation shows that the
meta- to ortho-cycloadduct transition increases upon decreasing
the value of AG"" below 1.4 eV.2°

Weller equation: AGET = ESS(D) — EfSS(A) — AEeycir + AEou(1)

where AG®" = free enthalpy of the radical ion pair formation
and E%™® = half wave potential. D = donor; A = acceptor.
AE.ir = excitation energy of the chromophore. AE.,,; =
coulombic interaction energy of the radical ion.

In addition to product selectivity issues discussed above, the
use of high-energy UV irradiation is a severe concern for the
classic photochemical dearomative cycloaddition reaction.”***
Low product yields, low functional group tolerance, and
unpredictable side reactions are common characteristics of
these methods, posing a limitation on their widespread appli-
cability. As a result, developing mild visible-light-mediated
catalytic techniques can serve as an important tool for
addressing the problems mentioned above.>***

In this regard, an external photosensitizer (PS) allows
aromatic hydrocarbons (ArH) to get photochemically excited by
incident visible light energy (Fig. 1C). The PS absorbs the visible
light energy to reach its triplet state (T,) and transfers it to the
ArH, a process known as triplet sensitization or energy transfer
(EnT), which excites ArH indirectly to its triplet state. A
simplified photosensitized cycle is depicted in Fig. 1E. Mecha-
nistically, EnT is classified into three types: primitive EnT,
Forster resonance EnT (a radiation-free transmitter-receiver
mechanism),” and Dexter EnT (Fig. 1F).>® Dexter described
the concurrent two-electron transfer mechanism in 1953
(Fig. 1F).? In the context of dearomative cycloaddition reactions
in organic synthesis, the photosensitized pathway generally
follows the Dexter EnT mechanism, providing mild conditions
and establishing the requirement of low activation energy over
a thermodynamically unfavorable thermal route. In Dexter EnT,
a photochemically excited PS transfers an electron to the lowest
unoccupied molecular orbital (LUMO) of the ArH substrate
while simultaneously receiving another electron from its high-
est occupied molecular orbital (HOMO). Excited state energy
transfer and spin multiplicity reversal are observed synchro-
nously. The proximity between the PS and the ArH is essential
for efficient Dexter EnT, and the rate decays exponentially with
the increasing separation between them.”® The triplet state
energy differences AEy = Ef(PS) — Er(ArH) can be used to
predict the efficiency of Dexter EnT, and the overall efficiency of
EnT is co-related with the AE;.*”” When AE; > 0 (exergonic),
many coupled transitions are able to populate the substrate's
triplet state. When AEr < (endergonic), coupled transitions only
exist from excited vibrational and rotational levels of the PS's
triplet state, leading to inefficient triplet-state excitation of the
substrates.?® The overall rate of EnT is determined by using the
diffusion rate and the spectral overlap integral, which can be
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calculated from the energies of the triplet excited states.>*?° The
product could be kinetically trapped if the E(PS) < Ex(product),
and the product selectivity can be determined.

An efficient energy transfer catalyst or a PS should have the
following characteristics: (1) a large absorption cross-section, (2)
an effective intersystem crossing (ISC) to its triplet state, (3) a long
excited state lifetime, and (4) high triplet state energy compared
to that of the substrate. In 1950, the sensitization-induced
synthetic technique was first introduced, in which ketones,
with the lowest 1t* excited state, acted as the PS.** However, the
application of said ketones as photosensitizers is quite limited
owing to their low absorption at longer wavelengths. Besides, the
n-1t* transition produces an unpaired electron on the oxygen
atom and promotes hydrogen atom transfer (HAT), resulting in
unwanted products. Later, ruthenium and iridium-based pho-
tocatalysts emerged, demonstrating high visible-light absorption
and longer excited state lifetimes.*

The triplet state energy transfer (EnT) catalysis has been
recently employed for diverse organic transformations and
reviewed as well.>»*>~*° The last review focused on arene-alkene
cycloaddition was reported in 2016.> The modern visible-light
mediated EnT dearomative cycloaddition has been advanced
since 2018 and is rapidly developing en route to becoming the
cornerstone of synthetic methodology. This tutorial article is
envisioned to summarize the recent developments to educate
the readers and demonstrate the exciting opportunities ahead.
The following sections provide an in-depth study and critical
analysis of the dearomative cycloaddition of different aromatic
compounds and their applications in various sustainable
chemical syntheses. The literature is classified based on the
mode of connection and sub-categorized based on the intra-
and intermolecularity of the cycloadditions involved.

2. Dearomative [2 + 2] ortho-
cycloaddition

Substantial research has been conducted on arene-alkene [27 +
27t] cycloaddition reactions (Fig. 1D), often referred to as ortho-
cycloaddition reactions employing direct excitation of the arene
by UV irradiation.* As discussed, the first ortho photo-
cycloaddition of benzene with maleic anhydride was reported
by Angus and Bryce-Smith.'* Since then, this field has received
significant contributions from many groups, including Fag-
giani,** Hanzawa and Panqutte,*> Wagner and Nahm,* Zupan-
cic and Sket,* and Hoffmann and Pete.** The visible-light-
induced variant was discovered only recently. Triplet sensitiza-
tion is employed to excite the arene moiety for a stepwise
reaction with the olefin counterpart to produce the cyclobutane
fragment, widely present in several natural products, pharma-
ceuticals, and agrochemicals.***” The following section
summarizes the recent developments.

2.1. Intramolecular dearomative [27 + 27| ortho-
cycloaddition

In 2018, Glorius et al. reported the first visible light-mediated
EnT dearomative [2 + 2] cycloaddition reaction (Fig. 2).**

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Visible light mediated EnT dearomative intramolecular [27t + 27] cycloaddition of alkene-tethered 2-acetyl naphthalene derivatives.

When the iridium-based photosensitizer PS-1 (E; = 49.2 kcal
mol ") was irradiated with 455 nm LEDs in MeOH in the
presence of the substrates 2.1, alkene tethered 1-naphthols
bearing an adjacent electron-withdrawing group, the [2 + 2]
cycloadduct 2.2a was isolated in 93% yield. However, when PS-2,
having a higher Ey (=61.8 kcal mol ™), capable of exciting 2.2,
was used, a different cascade product 2.3 with a 6/4/6/5 fused
ring structure was isolated. The Ey of 2.2a was computed to be
55.9 kcal mol " (B3LYP/6-311+G(2d,p) level of density func-
tional theory (DFT)), and PS-1 could not productively interact
with 2.2a since it has a low triplet energy of 49.2 kcal mol . The
consequent experimental studies demonstrated the selective
synthesis of [2 + 2] cycloadduct 2.2 using PS-1 (1 mol%) in
0.02 M MeOH (condition A) and cascade product 2.3 using PS-2
(1 mol%) in 0.04 M 1,4-dioxane (condition B). A detailed study
on the photophysical properties of the PSs confirmed that
photoinduced single electron transfer (SET) was not responsible
for the generation of 2.2 and 2.3. Instead, the authors correlated
the differing product identities with the different Ers of the
respective PSs. Both PSs absorbed visible light and became
excited to their triplet state, thus activating naphthols 2.1 via
EnT to their triplet state 2.1(T,), followed by the commence-
ment of intramolecular stepwise [2 + 2] cycloaddition to
generate cyclobutanes 2.2. The selectivity mentioned above was
found to be controlled by the relative rates of EnT between the
PS and substrate. Stern-Volmer quenching studies showed that

© 2023 The Author(s). Published by the Royal Society of Chemistry

2.2 effectively quenched the luminescence of PS-2 only. PS-1
having a lower Er does not interact with 2.2. Thus, it was
proposed that rapid conversion of 2.1 to 2.2 initially occurred.
2.3 was formed subsequently from 2.2 via EnT-mediated vinyl
cyclobutane rearrangement. It should be noted that no reaction
was observed in the absence of the electron-withdrawing
carbonyl group, which is essential to lower the E of the naph-
thol moiety to undergo EnT with desired efficiency.

The You group was the first to report visible light-mediated
EnT intramolecular partial dearomative [2 + 2] cycloaddition
of indole derivatives 3.1 bearing a tethered alkene (Fig. 3,
condition A).* The Ers of C2-unsubstituted and unprotected
indole derivatives (3.1, R; = R, = H) was calculated to be 65 kcal
mol ' (B3LYP/6-311+G(2d,p) level of DFT), which bore no parity
with the Ers of PS-1 (Ep = 49.2 kecal mol ') and PS-2 (Ep = 61.8
keal mol %), and thus does not react (yield of 3.2a = 0%) under
the irradiation of visible light. Extending the conjugation by
incorporating a Ph group at the C2 position (3.1, R, = Ph)
lowered the Er to 55.9 keal mol ™. It smoothly underwent the [2
+ 2] cycloaddition in the presence of PS-2 (4 mol%) in a CH,Cl,/
CH;CN solvent mixture (3 : 1) to produce cycloadduct 3.2b with
an excellent 95% yield. Notably, the reactivity also increased
significantly for the N-electron withdrawing protecting group.
The N-trifluoroacetyl indole derivative produced 3.2d in 98%
yield. The proposed mechanism involved the excitation of PS-2
under blue light irradiation and EnT to yield a diradical species

Chem. Sci., 2023, 14, 12004-12025 | 12007
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Fig. 3 Visible light-mediated EnT dearomative intramolecular [27t + 27t] cycloaddition of C3-alkene-tethered indole derivatives.

3.1(T,) (Fig. 3). Subsequent 5-exo-trig cyclization forms diradical
species 3.3, which undergoes ISC followed by radical recombi-
nation to give the desired [2 + 2] cycloadduct 3.2. Although this
method tolerates substituted pendant olefin derivatives well,
the cationic nature of iridium complexes and their low solu-
bility limit the widespread application of this reaction. Never-
theless, a successful strategy was initiated for developing such
highly strained molecules with contiguous quaternary centers.
In 2022, Nolan et al. modified the above approach by using the
carbene-metal-amido complex (Fig. 3, condition B).** The gold
carbazolyl complex [Au(SIPr)(Cbz)] PS-3 (Er = 66.6 kcal mol ;
uB3LYP/6-311+G(2d,p) level of DFT) acted as the sensitizer. It
allowed the more facile intramolecular cycloaddition to occur in
a shorter reaction time using greener solvents (MeOH, EtOAc,
and i-PrOAc). However, 365 nm UV light irradiation was
required. The authors successfully probed the cycloaddition of
challenging unprotected indole, yielding a single diastereomer
of the desired product 3.2a in 80% yield. It was also confirmed
that diester-substitution is unnecessary to form the cycloadduct
3.2f. Indoles with electron-donating substituents were also well
tolerated for this reaction forming 3.2g with 91% yield.
Quenching studies, light on/off experiments, cyclic voltammo-
grams, and quantum yield determination provided evidence to
support the mechanism via the EnT pathway.

In 2020, the Fu group fostered a novel and practical photo-
catalytic partial dearomative intramolecular [2 + 2] cycloaddi-
tion of indole derivatives 4.1 via hydrogen bond-influenced EnT
(Fig. 4A).°* Substrate 4.1 (Ey = 62.5 kcal mol ) has a relatively

12008 | Chem. Sci, 2023, 14, 12004-12025

higher Ey than PS-2 (E; = 61.8 kcal mol ') and PS-4 (E; = 55.2
kcal mol '), thus making the energy transfer step thermody-
namically unfeasible. The reaction produced lower yields when
PS-2 and aprotic solvents, including CH,Cl,, MeCN, and DMF,
were employed. Switching the nature of the solvent from aprotic
to protic by introducing trifluoroethanol resulted in a dramati-
cally improved yield of 4.2 up to 96%. The aggregation-induced
and cooperatively enhanced H-bonds between the oxygen atom
of the amide and trifluoroethanol were reasoned to be respon-
sible for lowering the E; of the substrate below that of the PS-2.
In particular, when the electron-withdrawing group (COOMe,
formyl, and phenyl) was substituted at the C2 or C3 position, an
excellent, up to 97%, yield of 4.2d was obtained.

In the same year, the You group disclosed the visible light-
mediated EnT divergent partial dearomative cycloaddition of
indole-tethered O-methyl oximes 4.3 (Fig. 4B).*> The reaction
was conducted in CH,Cl, (0.01 M) in the presence of PS-5. The
[2 + 2] cycloadduct 4.4b was isolated as a single diastereomer in
97% yield. The presence of an EWG or an aryl group at the C2
position of indole achieved excellent results. However, the [2 +
2] cycloaddition of the 3-alkyl substituted indole moiety was
interrupted after the first C-C bond formation. 1,5-hydrogen
atom transfer (HAT) took place faster, delivering exocyclic C=C
bonded products 4.5 (Fig. 4B). The computation studies (B3LYP/
6-31G(d,p) level of DFT) suggested that formation of early stage
[2 + 2] intramolecular dearomative cycloadducts 4.7 was kinet-
ically controlled. When the reaction was allowed to continue,
the consumption of 4.7 caused the regeneration of 4.6, which

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Visible light mediated EnT dearomative intramolecular [27 + 27] cycloaddition of (A) N1-olefin, (B) N1-O-methyl oxime, (C) N1-alkyne,

and (D) N1-vinyl cyclopropane tethered indole derivatives.

then underwent 1,5-HAT to yield the thermodynamically
controlled products 4.5. Due to conformational restrictions
preventing a 1,5-HAT process, an indene-fused substrate
underwent dearomative [2 + 2] cycloaddition, providing product
4.8 in 96% yield.

© 2023 The Author(s). Published by the Royal Society of Chemistry

At the same time, the You group also registered the intra-
molecular partial dearomative [2 + 2] cycloaddition of indole-
tethered terminal alkynes 4.9 in the presence of PS-2 under
blue LED irradiation (Fig. 4C).* Tetracyclic cyclobutene-fused
benzindolizidines 4.10 were formed in good to excellent yields
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and >20:1 dr. An EWG (CO,Et, CO,Me) at the C2 position was
necessary. Pyrrolo[2,3-b]pyridine derivative 4.10b also under-
went the reaction, albeit in moderate yields. However, due to the
high Er (up to 59.9 kcal mol™") for C3-EWG substituted
substrates (4.9, R; = H, R, = CO,Me, COMe, CN), PS-2 furnishes
the corresponding products in low yields (up to 57%). Inter-
estingly, PS-5 having higher E; = 63.5 kcal mol " enabled their
[2 + 2] cycloaddition to produce 4.10c in moderate yields. Due to

View Article Online

Review

the lack of resonance stabilization for the photo-generated
unpaired electron, a pyrrole substrate underwent cycloaddi-
tion reactions to produce 4.10d in a moderate 44% yield in the
presence of PS-5.

Vinylcyclopropanes have demonstrated their applicability as
an essential building block in several organic syntheses and
frequent recurrence in many natural products.* The tendency
to undergo easy ring-opening and capacity to generate
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Fig. 5 Visible light mediated EnT dearomative intramolecular [2 + 27] cycloaddition of (A) alkene tethered carboxamide of the indole/
benzofuran/benzothiophene derivative, and (B) allene tethered indole derivatives.
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diradicals make them a well-known reagent in radical clock
experiments.” In 2021, You studied the partial dearomative
cyclization of indoles and pyrroles with these units (Fig. 4D).>®
Upon irradiation with blue LEDs (24 W, Ay = 455 nm), PS-2
(1 mol%) catalyzed the dearomative [2 + 2] cycloaddition of C3-
carboalkoxy substituted substrates 4.11 in MeCN. The
cyclobutene-fused indolines 4.12 were produced in high yields
with 6:1 dr. However, without a C3-carbomethoxy substituent,
the same reaction produced [5 + 2] cycloadducts, not discussed
in this manuscript. The authors attributed this alteration of the
reaction pathway to the increase in steric bulk at the C3-position
of the indole ring, which leads to alkene-generated diradical
addition directly to the indole fragment in a facile [2 + 2]
manner, thus circumventing the [5 + 2] cycloadduct formation.

In 2020, Dhar et al. reported the visible light-induced EnT
partial dearomative intramolecular [2 + 2] cycloaddition reac-
tion of C2-substituted heteroarenes 5.1 for the synthesis of
cyclobutane-pyrrolidinone-fused tetracyclic scaffolds 5.2
(Fig. 5A, condition A).”” There are two potential routes of ring
closure leading to the formation of the product: (a) 5-exo-trig;
and (b) 7-endo-trig, as demonstrated in the proposed mecha-
nism (Fig. 5A). A computation study (B3LYP/6-311+G(2d,p) level
of DFT) revealed that the former pathway was energetically
more favorable than the latter. Tethering of olefin in the car-
boxamide substituent at the C2 position lowers the Et to <60
kcal mol™! when compared to the olefin tethered at the C3
position of carboxamide, which has E1 > 60 kcal mol . This was
due to the enhanced stability via extended conjugation of the
diradical intermediates 5.1(T,), which eliminated the require-
ment for the phenyl and ester group at the C2 position, as
shown in Fig. 3 (condition A). The scope of the substrates went
well beyond the indole-based moiety where C2 substituted
indenes (5.1, X = CH,), benzothiophenes (5.1, X = S), and
benzofurans (5.1, X = O) with E;s less than 60 kcal mol™" were
also capable of undergoing intramolecular dearomative cyclo-
addition with excellent 93-95% yield to produce 5.2b, 5.2¢, and
5.2d, respectively. With the irradiation of the photosensitizer
(PS-5), substrates 5.1 undergo 57% conversion in 24 h, and for
the complete transformation, 48 h was required. With 400 nm
purple light, the reaction was accelerated, and 5.1 was fully
reacted within 18-24 h. However, for the 6-bromo-
functionalized indole derivative, a 5% proto-debromination
side product was observed in the presence of higher energy
400 nm light. An excellent yield of 97% was also observed for
cycloadduct 5.2e with an unprotected indole. However, only
small quantities of cycloadduct 5.2f were observed for
substrates bearing an unprotected carboxamide group.

In 2022, Hudson et al. demonstrated imidazoacridine-based
thermally activated delayed fluorescence (TADF) material (ACR-
IMAC, PS-6) to be an affordable, highly effective organic alter-
native to the commonly used iridium-based PSs for visible light
EnT catalysis (Fig. 5A, condition B).*® The twisted donor-
acceptor architecture of these materials accelerates rapid ISC
and widens the HOMO-LUMO energy gap, thus minimizing
electron transfer phenomena. Besides, high Ers (63.7 kcal
mol "), extended excited state lifetimes (64 ps), and poor
oxidizing properties make them effective PSs in visible light-

© 2023 The Author(s). Published by the Royal Society of Chemistry
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mediated EnT reactions. It has been demonstrated that the
TADF material PS-6 completely converts 5.1 to cycloadducts 5.2
under purple LED irradiation. However, the efficiency dropped
to a yield of 51% when exposed to blue light. The derivatives of
benzo-thiophene, chromene, and indene also experience
a similar dearomative [2 + 2] cycloaddition with excellent yield
and high diastereocontrol (dr > 99:1). However, the cycload-
dition of indole with an alkyne did not proceed successfully.

In 2020, Koenig investigated the potential of low-cost 2CzPN
(PS-7, Ex = 60.6 kcal mol™") as a PS over well-known iridium-
catalysts to carry out the partial dearomative cycloaddition of
allene-tethered indoles 5.5 in the presence of blue LEDs
(Fig. 5B).” Ohkuma previously attempted the same reaction
using a high catalyst loading of 3’,4-dimethoxyacetophenone
(50 mol%) as the PS. However, this involved irradiation from
a high-energy mercury lamp through Pyrex glass.®® In this
report, the desired cis-fused methylenecyclobutane-containing
products were obtained in 80% yields with high stereo-
selectivity along with a trace amount of undesired alkyne
product via 1,5-HAT. Also, incorporating -OMe and -COOMe
groups at the C5 position reduced the reaction rates, producing
undesirable deacylated or photo-Fries rearranged side products.
However, the employment of PS-7 by Koenig et al. overcame the
difficulties mentioned above. With the irradiation of PS-7 in the
presence of a 455 nm light source, substrates 5.5 produced
a mixture of rac-5.6 and rac-5.7 in a 5.3 : 1 ratio in toluene. The
solubility of uncharged PS-7 in toluene allows its easy recovery
and reuse over several cycles. Non-polar solvents inhibited
electron transfer from indole derivatives 5.5 to PS-7, indicating
EnT to be the operative mechanistic pathway. The presence of
two ester groups facilitates ring closure via the Thrope-Ingold
effect.

In 2022, Bach accessed the low-lying triplet states of aryl
iminium ions 6.1 via EnT (Fig. 6).°* Olefin-tethered aryl iminium
ions 6.1 produced the [2 + 2] cycloadducts 6.2 in the presence of
2.5 mol% thioxanthone (TXT, PS-8, Er = 63.1 kcal mol ') under
420 nm blue light irradiation for 18 h. Cycloadducts 6.2 undergo
iminium ion-triggered rearrangement to produce -cyclized
products 6.3. The rearranged products 6.4 were isolated after
treating the reaction mixture with agq. NaOH. Carbon-tethered
olefinic and alkyne-tethered aryl iminium ions were found to
be unreactive, proving the necessity of the oxygen substituent at
the 2-position of iminium ions 6.1 to carry out the cycloaddi-
tion. Notably, under standard conditions, methoxy-substituted
arenes and those with a substituent at the 5-position failed to
give expected products which the authors attributed to inac-
cessibility of the respective triplet states due to change in elec-
tronic properties.

2.2. Intermolecular [27t + 27t] ortho-cycloaddition

Due to entropic challenges, the intermolecular [2 + 2] cycload-
dition reactions are more demanding than the intramolecular
ones. Besides, the EnT-generated excited state of the substrate
must be long-lived to be intercepted by the coupling partner. In
2018, Meggers et al. reported the first visible-light-induced
intermolecular dearomative [2 + 2] cycloaddition of 2-N-
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Fig. 6 Visible light-mediated EnT dearomative intramolecular [27t + 27] cycloaddition of an olefin tethered aryl-iminium ion.

acylpyrazole-substituted benzofurans 7.1 with styrenes 7.2
using a chiral-at-rhodium complex PS-9 (2 mol%) as the catalyst
(Fig. 7).°> The cycloadducts 7.3 were isolated in high yields with
up to 98% ee on exposure to blue LED irradiation with PS-9 for
18 h. The reaction also yielded minor diastereomers 7.4 and
regioisomers 7.5. Due to the lability of the N-acyl pyrazole
moiety, the initially formed cycloadduct was treated with
methanol in the presence of a base to isolate methyl ester 7.3 as
the product. The diastereo- and regioisomeric ratios depended
on the nature of substituents on styrenes. The reaction with
parent styrene produced 7.3a in 78% yield with 98% ee, 6.2:1
dr, and 5.3:1 rr. Computation studies (B3LYP/6-31G(d,p) level
of DFT) supported this observation. The (Z)-B-methyl styrene
produced 7.3b in 90% yield with 97% ee and very high (>20:1)
dr and (>20:1) rr when irradiated at —30 °C. The dr was found
to be temperature dependent, as the same reaction produced
a poor 1.8:1 dr under room temperature conditions. This
observation was consistent with the formation of a biradical
intermediate where temperature plays a crucial role in the
rotation of the C-C single bond, vide infra. When (E)-B-methyl
styre