Dalton **Transactions**

PAPER

Cite this: Dalton Trans., 2021, 50, 4380

Received 5th January 2021, Accepted 26th February 2021 DOI: 10.1039/d1dt00038a [rsc.li/dalton](www.rsc.li/dalton)

Introduction

The coordination chemistry of high oxidation state molybdenum halides and oxide halides was first explored in some detail in the 1970′s, with the emphasis on neutral N- and O-donor ligands $1-4$ and with much of the impetus coming from modelling of the metal sites in molybdenum enzymes and applications in catalysis.⁴⁻⁶ Interest in high oxidation molybdenum complexes bearing sulfur donor ligands stems in part from the presence of Mo–S coordination in the molybdenum-containing enzymes, nitrate reductase, sulfite oxidase and Fe–Mo nitrogenases which involve (anionic) cysteine or sulfide ligands. $4-6$ The chemistry with neutral P- and As-donor ligands with Mo(v) has also been investigated,^{$7-11$} but sulfur-

School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK. E-mail: G.Reid@soton.ac.uk

Synthesis, properties and structural features of molybdenum(V) oxide trichloride complexes with neutral chalcogenoether ligands†

Danielle E. Smith, William Levason, \blacksquare James Powell \blacksquare and Gillian Reid \blacksquare *

Complexes of oxotrichloromolybdenum(v) with neutral group 16 donor ligands, $[MoOCI₃(L-L)]$ (L-L = RS $(CH_2)_2$ SR, R = ⁱPr, Ph; MeS(CH₂)₃SMe; MeSe(CH₂)₂SeMe; MeSe(CH₂)₃SeMe), [{MoOCl₂(EMe₂)}₂(µ-Cl)₂] (E = S, Se, Te), $[(M\odot OCl_3)_2$ {o-C₆H₄(EMe)₂}]_n (E = Se or Te) and $[(M\odot OCl_3)_2$ {MeTe(CH₂)₃TeMe}]_n, have been obtained by reaction of the ligands with $[MoOCl₃(thf)₂]$ or MoOCl₃ in either CH₂Cl₂ or toluene, and characterised by microanalysis, IR and UV-visible spectroscopy and magnetic measurements. The telluroethers are the first examples containing Mo in a positive oxidation state. X-ray crystal structures are reported for the six-coordinate fac-[MoOCl₃{MeS(CH₂)₃SMe}], mer-[MoOCl₃{ⁱPrS(CH₂)₂SⁱPr}] and mer-[MoOCl₃{MeSe(CH₂)₂SeMe}], as well as the six-coordinate chloride-bridged dimers, [{MoOCl₂(SMe₂)}₂(µ-Cl)₂] and [{MoOCl₂(SeMe₂)}₂(µ-Cl)₂]. The structure of the mixed-valence decomposition product, [Mo^{IV}Cl ${c}$ -C₆H₄(TeMe)₂)₂(µ-O)Mo^VOCl₄], was also determined. In toluene solution MoOCl₄ is reduced by MeS (CH₂)₃SMe to produce the Mo(v) complex, [MoOCl₃{ MeS(CH₂)₃SMe}]. Crystal structures of the previously unknown diphosphine analogue, $[MoOCl₃(Me₂P(CH₂)₂PMe₂)]$, and the mixed-valence derivative $[Mo^{IV}Cl$ ${Me_2P(CH_2)_2PMe_2}_2$ (µ-O)Mo^VOCl₄] are also reported for comparison and help to clarify earlier contradictory literature reports. In contrast to the dimeric EMe₂ complexes, $[\text{MoOCl}_2(\text{EMe}_2)]_2(\mu\text{-Cl}_2]$, PMe₃ forms the monomeric complex, fac -[MoOCl₃(PMe₃)₂]. PAPER
 (A) Check for updates
 (A) Check for updates
 (A) Check for updates
 (A) Check for updates
 (A)
 Complexes
 Complexes
 Complexes
 Complexes
 Complexes
 Complexes
 Complexes
 Complexes
 Co

based ligands were mostly represented by charged thiolate and dithiocarbamate ligands. $2-4$ More recent work has reported a series of extremely moisture sensitive Mo(vi) complexes $\text{[MoO}_2\text{X}_2\text{(dithioether)]}$ (X = Cl or Br; dithioether = RS(CH₂)₂SR, $R = Me$, Et, ⁱPr), which have distorted octahedral structures with the sulfur donor atoms *trans* to $Mo=O;^{12,13}$ there are also some thia-macrocyclic analogues. $14,15$ Complexes of the type [MoOCl₃(dithioether)] were briefly described in the 1970's, characterised only by microanalysis and IR spectroscopy, but the structures and isomer(s) present were not established.^{15,16} There is a single preliminary report of a selenoether complex of MoOCl₃,¹⁷ but no known telluroether complexes.

We have recently examined the complexes of WOCl₄, $WOCl₃$, $WSCI₄$ and $WSCI₃$ with mono- and di-thio- and -seleno-ethers, and found that $W(v)$ or $W(v)$ complexes could be isolated depending upon the reaction conditions. We also showed that selected dithioether complexes, for example $[(WSCI₄)₂(\mu$ -ⁱPrSCH₂CH₂SⁱPr]], can function as single source LPCVD (low pressure chemical vapour deposition) reagents for the growth of thin films of WS_2 , an important semiconducting material.¹⁸ In contrast, very little data on the molybdenum chalcogenide halides or their coordination complexes exists.¹⁹ The crystal structures of two forms of $MoSCI₃$ obtained from crystals grown at high temperature found that both contain

[†]Electronic supplementary information (ESI) available: Crystallographic parameters (Table S1), IR and UV/visible spectra for the new complexes. CCDC 2050667: $[\text{MoOCl}_2(\text{SeMe}_2)](\mu\text{-Cl})_2]$, 2050668: $[\text{MoOCl}_3(\text{Me}_2\text{P}(\text{CH}_2)_2\text{PMe}_2)]$, 2050669: $[MoOCl₃(PhS(CH₂)₂SPh)], 2050670: [MoOCl₃(MeSe(CH₂)₂SeMe)],$ 2050671: $\text{[MoOCl}_{3}(\text{^{1}PrS}(\text{CH}_{2})_{2}\text{S}^{\text{i}}\text{Pr})],$ 2050672: $\text{[{MoOCl}_{2}(\text{SMe}_{2})\}(\mu\text{-Cl})_{2}],$ 2050673: $\text{[MoCl}\{\text{Me}_2\text{P}(\text{CH}_2)_2\text{PMe}_2\}_2\text{[\mu-O)}\text{(MoOCl}_4)\text{]},\quad 2050674\text{:}\quad \text{[MoOCl}_3\text{(MeS}(\text{CH}_2)_3\text{SMe)}\text{]}$ 2050891: $\text{[MoCl}\lbrace o\text{-}C_6H_4(\text{TeV})_2 \rbrace_2(\mu\text{-}O)\text{MoOCl}_4\text{]} \cdot \text{CH}_2\text{Cl}_2.$ For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/d1dt00038a

 $Mo(w)$ as $Mo₂$ units and disulfide groups, and not $Mo(v)$ ²⁰ It is unclear if $MoSCI₃$ prepared at low temperatures from $MoCl₅$ and $S(SiMe₃)₂$ or $Sb₂S₃$ contains $Mo(v)^{21,22}$ while $MoSCl₄$ is unknown.19

In order to allow comparisons with the $WOCl₄$, $WOCl₃$, $WSCI₄$ and $WSCI₃$ chemistry, we have examined the chemistry of MoOCl₃ with neutral chalcogenoethers and report here complexes of mono- and bi-dentate thio-, seleno- and telluroethers. Data on diphosphine analogues, which clarifies some of the (inconsistent) earlier studies, $7-9$ is also presented.

Results and discussion

Scheme 1 shows the range of chalcogenoether complexes of $Mo(v)$ prepared in this study and the different structure types observed.

Dithio- and diseleno-ether complexes

The reaction of $\text{[MoOCl}_{3}(\text{thf})_{2}\text{]}$ with $\text{MeS}(\text{CH}_{2})_{3}\text{SMe}$ or ⁱPrS $(\text{CH}_2)_2\text{S}^i\text{Pr}$ in dry CH_2Cl_2 produced moisture sensitive. green [MoOCl₃(dithioether)] complexes. Structures of both species were determined and revealed that $[MoOCl₃$ {MeS $(CH₂)₃$ SMe}] (six-membered chelate ring) was the fac isomer, whilst

 $\left[\text{MoOCl}_{3}\right\}^{\text{i}}\text{PrS}(\text{CH}_{2})_{2}\text{S}^{\text{i}}\text{Pr}\right\}]\text{ (five-membered chelate ring) was the }$ mer-isomer (Fig. 1). The reason for the different isomers with the five- and six-membered rings is uncertain, although the difference in the S–Mo–S chelate angles of ∼20° is notable. The behaviour replicates that found with the tungsten (v) analogues, fac -[WOCl₃{MeS(CH₂)₃SMe}] and mer-[WOCl₃{MeS] $(CH_2)_2$ SMe}].¹⁸ The bond lengths within the two structures show the expected short Mo=O of ~1.67 Å and that the Mo–Cl and Mo-S trans to Mo= O are longer than the other bonds of each type, indicating the high *trans*-influence of the $Mo=O$ bond.

The reaction of MoOCl₄ with MeS(CH₂)₃SMe in dry toluene gave a green product with an identical IR spectrum to that of mer -[MoOCl₃{MeS(CH₂)₃SMe}] and the X-ray structure determination of a crystal obtained from the $MoOCl₄$ synthesis route (Method 2) indeed confirmed it to be the $Mo(v)$ complex. The structural data were identical to that in Table S1,† and hence are not reported, but confirm that thioether ligands reduce $MOC₁$ to $MOC₁$ complexes, similar to the behaviour reported with some O- and N-donor ligands.²³

The weaker σ -donor PhS(CH₂)₂SPh failed to displace the thf from $[MoOCl₃(thf)₂]$, but it reacted with a suspension of MoOCl₃ in CH₂Cl₂ to form brown $[MoOCl₃{PhS}CH₂)₂SPh$. The crystal structure of this complex showed it to be the mer-

Scheme 1 Methods for the synthesis of the Mo(v) chalcogenoether complexes obtained from MoOCl₃. Note that for some of the alkyl-substituted dithioether and diselenoether complexes [MoOCl₃(thf)₂] was used as the Mo(v) source – see discussion below and Experimental.

Fig. 1 Crystal structures of fac-[MoOCl₃{MeS(CH₂)₃SMe}] (a) and mer-[MoOCl₃{ⁱPrS(CH₂)₂SⁱPr}] (b) showing the atom numbering scheme. Ellipsoids are shown at 50% probability, hydrogen atoms omitted for clarity. Selected bond lengths (Å) and angles (°): (a) Mo1–Cl1 = 2.4540(2), Mo1–Cl2 = 2.3451(2), Mo1–Cl3 = 2.3451(4), Mo1–O1 = 1.674(1), Mo1–S1 = 2.5388(3), Cl1–Mo1–Cl2 = 94.52(2), Cl2–Mo1–Cl3 = 92.55(3), Cl2–Mo1–O1 = 101.87(4), Cl3–Mo1–O1 = 101.87(4), S1–Mo1–S1 = 97.95(2); (b) Mo1–Cl1 = 2.3578(8), Mo1–Cl2 = 2.3378(8), Mo1–Cl3 = 2.3618(7), Mo1–O1 = 1.671(2), Mo1–S1 = 2.8298(8), Mo1–S2 = 2.5665(7), Cl1–Mo1–Cl2 = 91.25(3), Cl1–Mo1–O1 = 98.99(8), Cl1–Mo1–Cl3 = 89.69(3), Cl2–Mo1–O1 = 98.99(8), S1–Mo1–S2 = 78.83(2).

isomer (Fig. 2), which suggests that the ability to form a fivemembered chelate ring with a smaller chelate angle (S1–Mo1– $S2 = 78.55(3)°$ may be an important factor influencing the isomer formed. The structure also reveals a very markedly longer Mo–S_{transO} = 2.911(1) Å, which compares with Mo– $S_{transCl} = 2.531(1)$ Å, showing the high *trans*-influence of the $Mo=O$ bond on the weaker aryl thioether donor ligand.

Brownish diselenoether complexes, [MoOCl₃(diselenoether)] (diselenoether = $MeSe(CH_2)_2SeMe$, $MeSe(CH_2)_3SeMe$), were obtained from reaction of the ligands with $MoOCl₃$ or $\left[\text{MoOCl}_{3}(\text{thf})_{2}\right]$ in a 1:1 molar ratio, but $o\text{-}C_{6}H_{4}(\text{SeMe})_{2}$ did not displace thf from $[MoOCl₃(thf)₂]$. The reaction of MeSeCH₂SeMe with MoOCl₃ produced a black oily decomposition product. However, the 1:1 reaction of o -C₆H₄(SeMe)₂ with MoOCl₃ in $CH₂Cl₂$ gave a brown product for which the microanalytical data indicated a $2:1$ MoOCl₃: diselenoether stoichiometry. This is discussed along with the similar ditelluroether complexes below. The X-ray crystal structure of mer -[MoOCl₃{MeSe $[CH₂)₂SeMe$ }] was obtained (Fig. 3).

The five complexes described have room temperature magnetic moments of ~1.7 B.M., similar to other MoOCl3 complexes, $1,2,8,9$ and close to the spin-only value expected for a

Fig. 2 Crystal structure of mer- $[MoOCl₃{PhS}CH₂)₂SPh}]$ showing the atom numbering scheme. Ellipsoids are shown at 50% probability and hydrogen atoms are omitted for clarity. Note that the O/Cl exhibited disorder, which was modelled with split atom sites, refined to occupancies of 0.53 : 0.47. Only the major form is shown. Selected bond lengths (Å) and angles (°): Mo1-Cl1 = 2.324(1), Mo1-Cl2 = 2.394(1), Mo1-Cl3 = 2.311(3), Mo1–O1 = 1.706(2), Mo1–S1 = 2.531(1), Mo1–S2 = 2.911(1), Cl1–Mo1–Cl3 = 89.93(7), Cl1–Mo1–O1 = 102.2(5), O1–Mo1–Cl2 = 101.1(5), O1–Mo1–Cl3 = 106.6(3), Cl2–Mo1–Cl3 = 91.28(7), Cl2–Mo1– $S1 = 88.39(4)$, Cl1-Mo1-S2 = 81.49(4), S1-Mo1-S2 = 78.55(3).

Fig. 3 Crystal structure of mer-[MoOCl₃{MeSe(CH₂)₂SeMe}] showing the atom numbering scheme. Ellipsoids are shown at 50% probability and hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): Mo1-Cl1 = 2.3553(5), Mo1-Cl2 = 2.3517(5), Mo1-Cl3 = 2.3453(5), Mo1–O1 = 1.673(1), Mo1–Se1 = 2.6564(2), Mo1–Se2 = 2.8937(3), Cl1–Mo1–Cl3 = 90.35(2), Cl1––Mo1–O1 = 98.98(5), Cl2–Mo1–Cl3 = 90.65(2), Cl3–Mo1–O1 = 107.36(5), Se1–Mo1–Se2 = 79.76(1).

 $d¹$ complex. This indicates that any orbital contribution is quenched by the very asymmetric field of the molybdenum environment. 24 The IR spectra show very strong single bands due to $\nu\text{(Mo=O)}$ in the range 950–980 cm⁻¹, as well as strong overlapping bands at 355–300 cm−¹ assigned as Mo–Cl modes, but do not appear to readily distinguish the isomer present. The UV/visible spectra of the solids show a clear band at 13 000–14 000 cm^{-1} and a second band or shoulder at \sim 19 000–21 000 cm⁻¹. Assuming C_{4v} symmetry (the actual metal centre symmetry is lower) and placing $Mo=O$ as the dominant contribution along the four-fold axis, leads to the assignment as the d-d bands as ${}^{2}B_{2} \rightarrow {}^{2}E$ and ${}^{2}B_{2} \rightarrow {}^{2}B_{1}$, respectively.²⁵ The intense absorptions >20 000 $\rm cm^{-1}$, assigned as charge transfer bands, are less clearly resolved, but based upon the usual ligand electronegativities, 25 we assign the first intense feature (~21 000–22 000 cm⁻¹) as S/Se(π) → Mo(d) and the broad overlapping features at ~25 000–30 000 cm⁻¹ as Cl(π) \rightarrow Mo(d). The complexity of the electronic spectra in compounds of this type is shown by a combined UV/visible absorption, MCD and DFT study of $[MoOCl₃{Ph₂P(CH₂)}₂PPh₂]\;$;²⁶ here we are using the spectra to confirm the presence of $Mo(v)$ in the isolated complexes. **Obtor Tensactions**
 Open Computerion (Eds.) are the access Article in the Moyel and Article is liken to the computerion in the Moyel and Articles. All the computerions are equipped under a like of the most of the most

Dimethylchalcogenides ($EMe₂$, $E = S$, Se, Te)

Neither $SMe₂$ or Sem e₂ was found to displace thf from $[MoOCl₃(thf)₂]$. However, reaction of a suspension of MoOCl₃ in dry CH_2Cl_2 with 2 equivalents of EMe_2 produced complexes with a 1 : 1 Mo : EMe₂ empirical composition, MoOCl₃(EMe₂) (E = S, Se). There was no evidence for the formation of the 1:2 [$MoOCl₃(EMe₂)₂$] complexes. Crystals of both $MoOCl₃(EMe₂)$ (E = S, Se) complexes were obtained and the structures, which are isomorphous (Fig. 4), showed them to be chloride-bridged dimers, with six-coordinate Mo(v) centres, *i.e.* $[\text{MooCl}_2(\text{EMe}_2)]_2(\mu\text{-Cl}_2)]$ $(E = S, Se)$.

The Mo=O bonds (\sim 1.65 Å) are trans to asymmetrically bound (by $~\sim 0.4$ Å) bridging chlorides, with the EMe₂ groups arranged anti and perpendicular to the $Mo₂Cl₄O₂$ plane. The geometries are very similar to those found in $[(\text{MoOCl}_{2}\text{L})_{2}](\mu$ -Cl)₂] (L = O=C(H)OMe, thf, O = CEt₂).²⁷⁻²⁹

The reaction of $MoOCl₃$ with TeMe₂ in toluene produced brown $[\text{MoOCl}_2(\text{TeMe}_2)]_2(\mu\text{-Cl})_2]$, which is the first Mo(v) complex with a neutral tellurium donor ligand. Crystals were not obtained from this complex due to poor solubility and limited stability in solution, but spectroscopically it is very similar to the other $EMe₂$ complexes. The failure to produce the six-coordinate monomers, $[MoOCl₃(EMe₂)₂]$, even in the presence of excess EMe_2 , shows that the molybdenum(v) prefers to bind a chloride from another molecule, creating the bridged dimer structure, and is consistent with the weak donor properties of the $EMe₂$. The dimers are clearly distinguished from the [MoOCl₃(dichalcogenoether)] monomers by their IR spectra, with the dimers showing a strong $\nu(Mo=O)$ vibration in the range at 985–1005 cm⁻¹ (higher frequency than in the monomeric [MoOCl₃(dichalcogenoether)] type) and terminal Mo–Cl modes 360–310 cm−¹ ; weaker bands in the region \sim 270–250 cm⁻¹ and absent in the spectra of the [MoOCl₃(dichalcogenoether)] monomers, may be due to the chloride bridges. The magnetic moments of ∼1.7 B.M./Mo confirm the $Mo(v)$ assignment and the absence of any magnetic interactions between the molybdenum centres.

Ditelluroethers

The reaction of o -C₆H₄(SeMe)₂, o -C₆H₄(TeMe)₂ and MeTe $(CH₂)₃$ TeMe (L-L) with MoOCl₃ in a 1 : 1 molar ratio in CH₂Cl₂ failed to produce the expected $[MoOCl₃(L-L)]$ type complexes. Instead, dark brown complexes, identified by microanalysis as $[(\text{MoOCl}_3)_2(\text{L}-\text{L})]$, were obtained. Once isolated the compounds are very poorly soluble in CH_2Cl_2 and many attempts to

Fig. 4 Crystal structures of $\frac{1}{2}(\text{MoOL}[2(\text{SMe}_2])_2(\mu-\text{Cl}_2)$ (a) and $\frac{1}{2}(\text{MoOL}[2(\text{SMe}_2])_2(\mu-\text{Cl}_2)$ (b) showing the atom numbering scheme. Ellipsoids are shown at 50% probability and hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): (a) Mo1–Cl1 = 2.3264(2), Mo1–Cl2 = 2.3341(3), Mo1–Cl3 = 2.3953(3), Mo1–Cl3' = 2.7942(2), Mo1–O1 = 1.6515(8), Mo1–S1 = 2.5537(3), Cl1–Mo1–O1 = 102.48(1), Cl2–Mo1–O1 = 102.08(3), Cl3–Mo1–O1 = 99.55(3), Cl2–Mo1–Cl3 = 85.77(1), Cl1–Mo1–Cl3 = 92.340(9), Cl1–Mo1–S1 = 85.233(9), O1–Mo1–S1 = 92.67(3), Cl3– Mo1–Cl3 = 77.520(8); (b) Mo1–Cl1 = 2.4024(4), Mo1–Cl2 = 2.3385(4), Mo1–Cl3 = 2.3299(4), Mo1–Cl1' = 2.7927(4), Mo1–O1 = 1.653(1), Mo1–Se1 = 2.6647(3), Cl1–Mo1–O1 = 98.89(4), Cl2–Mo1–O1 = 103.10(4), Cl3–Mo1–O1 = 102.38(4), Cl2–Mo1–Cl3 = 92.32(2), Se1–Mo1–Cl1 = 78.76(1), Se1–Mo1–Cl1 = 87.438(10), O1–Mo1–Se1 = 92.89(4).

produce crystals for an X-ray structure determination have been unsuccessful. However, the magnetic moments of ∼1.7 B. M./Mo and the UV-visible spectra of these solids are consistent with their formulation as six-coordinate oxo-molybdenum(v) complexes.

The UV-visible spectra of the ditelluroether complexes show a d–d band at ∼14 000 cm $^{-1}$ (²B₂ → ²E); a second more intense feature 18 000–20 000 $\,\mathrm{cm}^{-1}$ may be the second d–d band $(^{2}\mathrm{B}_{2}$ \rightarrow ${}^{2}B_{1}$), but given the lower electronegativity of Te²⁴ is probably the Te(π) \rightarrow Mo(d) charge transfer transition, which obscures the d–d band.

The IR spectra are significantly different to those of [MoOCl₃(L–L)] (L–L = dithioether or diphosphine),^{8,9} but are similar to those of $[\{MoOCl_2(EMe_2)\}_2(\mu\text{-}Cl)_2]$. In particular, the $\nu(\mathrm{Mo}=\mathrm{O})$ vibrations are at higher frequency (985–1000 cm^{-1}), and in addition to several terminal ν (Mo–Cl) modes ∼320–300 cm⁻¹, also show a peak ~250 cm⁻¹, probably due to a chloride bridge. In the absence of a crystal structure, the geometries cannot be established unequivocally, but the spectroscopic data (and insolubility) are consistent with a structure type similar to those in $[\text{MoOCl}_2(\text{EMe}_2)]_2(\mu\text{-Cl})_2]$, with the $EMe₂$ ligands replaced by bridging ditelluroethers, leading to the formulation as an oligomer, $[(\text{MoOCl}_2)_2(\mu\text{-}Cl)_2(\mu\text{-}ditellur$ oether)]_n. There are several literature examples of Group 16 ligands with o-phenylene backbones adopting a bridging mode, authenticated by X-ray crystal structures.³⁰⁻³²

The brown solution from the preparation of $\frac{1}{2}Mod C_1$ ₂{o- $C_6H_4(TeMe)_2$ _n also deposited a few dark green crystals, which were shown by X-ray crystallographic analysis to be the mixed valence complex, $\left[\text{Mo}^{\text{IV}}\text{Cl}\{\text{o-C}_6\text{H}_4(\text{TeV})\text{e}\}\text{)}_2\right]_2[\text{\mu-O})\text{Mo}^{\text{V}}\text{OCl}_4]$ (Fig. 5). This complex contains a $Mo(w)$ centre coordinated to

Fig. 5 Crystal structure of $[MoCl{o-C₆H₄(TeMe)₂}_{2}(\mu-O)$ $MoOCl₄$ $CH₂Cl₂$ showing the atom numbering scheme. Ellipsoids are shown at 50% probability and hydrogen atoms and solvent are omitted for clarity. Selected bond lengths (\AA) and angles (°): Mo1–Cl1 = 2.4486(7), Mo2–Cl2 – 5 = 2.3640(7) – 2.3930(7), Mo1–Te1 – 4 = 2.7432(3) – 2.7822(3), Mo1–O1 = 1.704(2), Mo2–O1 = 2.370(2), Mo2–O2 = 1.655(2), O2-Mo2-Cl2 - 5 = 78.4(1) - 82.2(1), Te-Mo1-Te_(chelate) = 85.316(8), 86.185(8), Te1 – 4–Mo1–Cl1 = 79.647(18)–89.939(18), Cl1–Mo1–O1 = $177.91(7)$, Mo1-O1-Mo2 = 159.63.1(11).

two chelating ditelluroethers, a terminal chloride and an $Mo=O$ group, which forms a very asymmetric bridge to a square pyramidal MoOCl₄⁻ anion, with Mo1-O1 = 1.705(4) Å and Mo2–O1 = 2.368(4) Å. These bond distances may be compared with the terminal Mo= O bond distance (Mo2-O2 = 1.659(5) \AA) in the latter. This complex appears to be the first structurally characterised molybdenum-ditelluroether complex in a positive formal oxidation state of the metal; all previously reported complexes are substituted carbonyls.^{33,34} Analogous complexes with some diphosphine and diarsine ligands have been reported, $8,9$ and the structure of (the previously unknown) $\text{[MoCl{Me}_2P(CH_2)_2PMe}_2{}_{2}(\mu\text{-}O)(\text{MoOCl}_4)\text{]}$ is discussed below. The crystals of $\left[Mo^{IV}Cl\{o-C_6H_4(TeMe)_2\}_2(\mu\text{-}O)\right]$ $Mo^VOCl₄$] result from a redox reaction, and its structure is not consistent with the spectroscopic data on the bulk $[\text{MoOCl}_3]_2$ { o -C₆H₄(TeMe)₂}]_n. The failure to isolate mononuclear $[MoOCl₃(L-L)]$ complexes with chelating $o\text{-}C_6H_4(SeMe)_2$, $o\text{-}C_6H_4(TeMe)_2$ and MeTe(CH₂)₃TeMe, seems analogous to the case of $\frac{[\text{MoOCl}_2(\text{EMe}_2)]_2(\mu\text{-Cl})_2}{\mu\text{-Cl}_2}$, where the $Mo(v)$ centre prefers to form chloride bridges rather than coordinate to a second, weakly donating chalcogenenoether. Paper **Context** cyntals for an *X*-ray is uncertainties Article. The March 2021. Note of the common of \sim 12/2021. Note for the material in the common of \sim 12/2021. Downloaded a second and a second on a second and a se

Phosphine complexes

The coordination behaviour of the chalcogenoether ligands to MoOCl₃ has both significant analogies and differences to that of some phosphine ligands, making for informative comparisons. Pink or red complexes $[MoOCl₃(diphosphine)]$ (diphosphine = $Ph_2P(CH_2)_2PPh_2$, cis-Ph₂PCH=CHPPh₂, $o\text{-}C_6H_4(\text{PPh}_2)_2$, were reported in the 1970s and confirmed by IR, UV/visible spectroscopy and magnetic measurements as $Mo(v)$ compounds.^{7–9} No structures were obtained, but EPR spectra supported *fac* octahedral isomers.^{8,9} A second (brown) form with $Ph_2P(CH_2)_2PPh_2$ and cis-Ph₂PCH = CHPPh₂ obtained by refluxing the red form in alcohol for several hours, had similar, but not identical, spectroscopic properties; Isovitsch et al ,¹⁰ confirmed the crystal structure of the red form of the $Ph_2P(CH_2)_2PPh_2$ complex as the *fac* isomer. In the present work we prepared the new complex $[MoOCl₃{Me₂}P$ $(CH_2)_2$ PMe₂}] from [MoOCl₃(thf)₂] and confirmed the *fac* geometry by a crystal structure (Fig. 6). The spectroscopic data on this complex (Experimental section) are in good agreement with that of the red isomers with other diphosphines.⁷⁻⁹ Notably, the five-membered chelate ring diphosphine complexes are *fac* isomers, contrasting with the mer-[MoOCl₃(dichalcogenoether)] described above.

The nature of the brown "isomers" is not entirely clear, but the original study⁸ of the red and brown forms of $[MoOCl₃{cis-}$ $Ph_2PCH=CHPPh_2$] showed they had identical EPR spectra with coupling to equivalent phosphorus donors, *i.e.* were both fac forms. Hence the brown form seems likely to be the red isomer co-crystallised with a second complex, probably an EPR silent $Mo(w)$ species. The presence of varying amounts of a cocrystallised second species would account for the various (small) differences reported by other workers.^{7,8,10} Similar problems, including X-ray structures with a variety of bond lengths for apparently the same complex, led to the proposal

Fig. 6 Crystal structures of [MoOCl₃(Me₂PCH₂CH₂PMe₂)] (a) and [MoCl(Me₂PCH₂CH₂PMe₂)₂(µ-O)MoOCl₄] (b) showing the atom numbering scheme. Ellipsoids are shown at 50% probability and hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): (a) Mo1–Cl1 = 2.3824(9), Mo1–Cl2 = 2.383(1), Mo1–Cl3 = 2.5011(8), Mo1–O1 = 1.680(2), Mo1–P1 = 2.5260(2), Mo1–P2 = 2.5250(8), Cl1–Mo1–Cl2 = 96.98(3), Cl1– Mo1–O1 = 100.19(8), Cl2–Mo1–Cl3 = 88.76(3), Cl2–Mo1–O1 = 104.66(8), P1–Mo1–P2 = 78.84(3); (b) Mo1–Cl1 = 2.5186(2), Mo1–O1 = 1.703(4), Mo1–P1 = 2.5131(2), Mo1–P2 = 2.5139(3), Mo2–O1 = 2.394(2), Mo2–O2 = 1.657(8), Mo2–Cl2 – 5 = 2.3573(4) – 2.3824(3), Cl1–Mo1–P1 = 78.92(2), Cl1–Mo1–P2 = 83.26(4), O2–Mo2–Cl2 – 5 = 97.57(2) – 98.89(4), P1–Mo1–P2 = 80.16(4), Mo1–O1–Mo2 = 178.05(8).

of bond-stretch or distortional isomerism in some other early d-block complexes, a concept subsequently considered to be erroneous.35

Pink or purple complexes with microanalyses indicating a [MoCl_{2.5}O(diphosphine)] were isolated in some systems⁷⁻⁹ and were formulated as the ionic $Mo(IV)-Mo(V)$ species $[Mo^{IV}OCl]$ (diphosphine) $_2$][Mo $^{\rm V}$ OCl₄], based upon spectroscopic data, and the observation that metathesis with NaBPh₄ gave $[Mo^{IV}OCl]$ $(diphosphine)$ ^{[BPh₄].}

During attempts to grow crystals of orange-yellow $[MoOCl₃{Me₂P(CH₂)₂ PMe₂}]$, a few deep purple crystals were also isolated that were confirmed by an X-ray structure (Fig. 6) to be $\text{[MoCl{Me}_2P(CH_2)_2PMe}_2\text{[µ-O{MoOCl}_4)],}$ analogous to $\left[\text{MoCl}\left\{\text{o}-\text{C}_{6}\text{H}_{4}(\text{TeMe})_{2}\right\}\right]_{2}(\mu\text{-O})\left[\text{MoOCl}_{4}\right]_{1}$ described above. Both molybdenum centres are in a distorted octahedral geometry and linked by a very asymmetric oxide bridge, Mo1–O1 = 1.703 (4), Mo2–O1 = 2.394(2) Å, which may be compared with Mo2– $Q2 = 1.657(8)$ Å for the terminal Mo=O unit. The original formulation^{7,8} was as ionic salts, $[Mo^VOCl]$ (diphosphine)₂][Mo^VOCl₄]. The reformulation as neutral μ oxido dimers in the solid state is likely to apply to all the reported examples, with the long Mo–O bond easily cleaved to give ions in solution.

Red fac -[MoOCl₃(PMe₃)₂] was obtained by Limberg et al.¹¹ as one product from reaction of the alkoxide complex, $\left[\text{Cl}_2\text{OMo}(\mu\text{-OEt})_2(\mu\text{-EtOH})\text{MoOCl}_2\right]$ with PMe₃; we obtained the same complex directly from $[MoOCl₃(thf)₂]$ and PMe₃ in CH_2Cl_2 . Our X-ray structure and the spectroscopy (Experimental section) are in good agreement with published $data$ ⁷, and are not discussed further here. The interest lies in the formation of a discrete *pseudo*-octahedral $1:2 \text{ Mo}: \text{PMe}_3$ monomer with the strong σ-donor alkyl phosphine, which contrasts with the formation of chloride-bridged dimers,

 $[\text{MoOCl}_2(\text{EMe}_2)]_2(\mu\text{-Cl})_2]$ (E = S, Se, Te), with the weaker donor chalcogenoethers discussed above.

Experimental

Syntheses were performed using standard Schlenk and glovebox techniques under a dry N_2 atmosphere. Solvents were dried by distillation from CaH₂ (CH₂Cl₂) or Na/benzophenone ketyl (toluene, n-hexane, diethyl ether). MoCl₅ and $O(SiMe₃)₂$ were obtained from Sigma-Aldrich. The monodentate ligands $(SMe₂, PMe₃, Sem (e₂)$ were obtained from Sigma-Aldrich or Strem and dried over molecular sieves. TeMe₂ was made by the method of Kuhn et al.³⁶ The dithioethers,³⁷ diselenoethers^{38,39} and ditelluroethers $40,41$ were prepared as described or by minor modifications thereof. $MoOCl₃$ was prepared from $MoCl₅$ and $O(SiMe₃)₂$.⁴² and $MoOCl₄$ obtained from Climax Molybdenum.

Infrared spectra were recorded on a PerkinElmer Spectrum 100 spectrometer in the range 4000–200 cm−¹ , with samples prepared as Nujol mulls between CsI plates. UV/visible spectra were recorded on powdered solids using the diffuse reflectance attachment of a PerkinElmer 750S spectrometer. Magnetic measurements were made using a Johnson Matthey magnetic balance. Microanalyses on new compounds were undertaken by London Metropolitan University or Medac Ltd.

mer -[MoOCl₃(thf)₂]

Prepared following the literature method.⁴³ Yield: 87%. IR spectrum (Nujol, v/cm^{-1}): 982 s Mo=O, 1117 s, 833 s br thf, 342 s, 315 m Mo–Cl. UV/Vis spectrum (diffuse reflectance) ν/ cm⁻¹: 32 550, 26 200, 22 000, 13 250. µ_{eff}: 1.71 B.M.

fac - $[MoOCl₃{MeS(CH₂)₃SMe}]$

Method 1. $[MoOCl₃(thf)₂]$ (0.150 g, 0.41 mmol) was suspended in CH_2Cl_2 (3 mL) and a solution of MeS(CH₂)₃SMe (0.056 g, 0.41 mmol) in CH_2Cl_2 (2 mL) was added slowly and the solution left to stir for 1 h. The brown solution formed was then concentrated to 3 mL in vacuo and the green solid which precipitated, was filtered off and dried in vacuo. Yield: 0.070 g, 40%. Required for $C_5H_{12}Cl_3MoOS_2$ (354.58): C, 16.94; H, 3.41. Found: C, 17.02; H, 3.39%. IR spectrum (Nujol, v/cm−¹): 955 s $Mo=O$, 348 s, 327 s, 306 m Mo-Cl. UV/Vis spectrum (diffuse reflectance) ν /cm^{−1}: 27 400, 26 000, 21 150, 18 350, 13 700. μ_{eff}: 1.71 B.M. **Paper Common Access Articles** Common Access Articles. The Common Access Article is licensed under the selection of the Creative Common Access Article is licensed under the selection of the selection and in Creative Com

Method 2. MoOCl₄ (0.150 g, 0.59 mmol) was suspended in toluene (5 mL) and a solution of $MeS(CH₂)₃SMe$ (0.081 g, 0.59 mmol) in toluene (2 mL) was slowly added and the green solution left to stir for 1 h. The green solution was concentrated to 3 mL in vacuo to produce a green precipitate that was filtered off and dried in vacuo. The green solid was washed in hexane $(3 \times 5 \text{ mL})$ and dried. Yield: 0.153 g, 70%. Required for $C_5H_{12}Cl_3MoOS_2 \cdot 0.2C_7H_8$ (373.00): C, 20.61; H, 3.67. Found: C, 20.82; H, 3.77%. The complex was spectroscopically identical to that made by Method 1. Green crystals suitable for X-ray crystallography were grown from CH_2Cl_2 .

mer-[MoOCl₃{ⁱPrS(CH₂)₂SⁱPr}]

 $\text{[MoOCl}_{3}\text{]}^{\text{i}}\text{PrS}(\text{CH}_{2})_{2}\text{S}^{\text{i}}\text{Pr}\text{]}$ was prepared similarly to Method 1 above, and isolated as a pale green solid. Yield: 62%. Required for C₈H₁₈Cl₃MoOS₂ (396.66): C, 24.22; H, 4.57. Found: C: 24.45; H, 4.15%. IR spectrum (Nujol, v/cm^{−1}): 979 s Mo=O, 349 s, 312 m Mo–Cl. UV/Vis spectrum (diffuse reflectance) ν/ cm^{−1}: 32 300, 30 400, 27 700, 23 000 sh, 21 500 sh, 13 600. µ_{eff}: 1.69 B.M.

mer -[MoOCl₃{PhS(CH₂)₂SPh}]

 $ModCl₃$ (0.150 g, 0.69 mmol) was suspended in $CH₂Cl₂$ (3 mL) and a solution of $PhS(CH_2)_2SPh$ (0.170 g, 0.69 mmol) in CH_2Cl_2 (2 mL) was added slowly and the resulting green solution left to stir for 1 h. The resulting brown solution was concentrated to 3 mL in vacuo and filtered, and the orange-brown solid dried in vacuo. Yield: 0.244 g, 76%. Required for C₁₄H₁₄Cl₃MoOS₂ (464.69): C, 36.19; H, 3.04. Found: C, 35.97; H, 3.18%. IR spectrum (Nujol, v/cm $^{-1}$): 966 s Mo $=$ O, 354 s, 319 m Mo–Cl. UV/Vis spectrum (diffuse reflectance) ν /cm⁻¹: 32 200, 26 900, 22 600, 21 300, 18 500 sh, 13 000. μeff: 1.71 B.M.

$[\{MoOCl_{2}(SMe_{2})\}_{2}(\mu$ -Cl)₂]

 $ModCl₃$ (0.150 g, 0.69 mmol) was suspended in $CH₂Cl₂$ (3 mL) and a solution of SMe_2 (0.085 g, 1.38 mmol) in CH_2Cl_2 (2 mL) was added slowly and the green solution left to stir for 1 h. The clear green solution was then concentrated to 3 mL in vacuo and layered with hexane (3 mL). The green crystals formed were isolated via filtration and dried in vacuo. Yield: 0.73 g, 38%. Required for $C_4H_{12}Cl_6Mo_2O_2S_2$ (560.86): C, 8.57; H, 2.16. Found: C, 8.98; H, 2.37%. IR spectrum (Nujol, v/ cm⁻¹): 1004 s Mo=O, 356 s, 319 s, 268 m Mo-Cl. UV/Vis spectrum (diffuse reflectance) ν /cm⁻¹: 26 000, 22 300, 19 600 sh, 13 800. μ_{eff} : 1.72 B.M./Mo.

$[\{MoOCl₂(SeMe₂)\}₂(\mu-Cl)₂]$

MoOCl₃ (0.150 g, 0.69 mmol) was suspended in CH_2Cl_2 (3 mL) and a solution of SeMe₂ (0.150 g, 1.38 mmol) in CH_2Cl_2 (2 mL) was slowly added and the green solution left to stir for 1 h. The red solution formed was concentrated to 3 mL in vacuo and layered with hexane (3 mL). The dark brown crystals were isolated via filtration, and dried in vacuo. Yield: 0.154 g, 68%. Required for $C_4H_{12}Cl_6Mo_2O_2Se_2$ (654.65): C, 7.34; H, 1.85%. Found: C, 7.43; H, 1.93%. IR spectrum (Nujol, v/cm−¹): 1004 s $Mo=O$, 368 sh, 351 s, 313 m Mo-Cl. UV/Vis spectrum (diffuse reflectance) ν /cm⁻¹: 32 500, 26 500, 20 700, 14 100. μ _{eff}: 1.68 B. M./Mo.

mer -[MoOCl₃{MeSe(CH₂)₂SeMe}]

 $\left[\text{MoOCl}_{3}(\text{thf})_{2}\right]$ (0.150 g, 0.41 mmol) was suspended in CH₂Cl₂ (3 mL) and a solution of MeSe $(\text{CH}_2)_3$ SeMe (0.089 g) , 0.41 mmol) in CH_2Cl_2 (2 mL) was added slowly and the green solution left to stir for 1 h. The resulting brown solution was concentrated to 3 mL in vacuo and filtered, then the solid dried in vacuo, isolating a dark brown solid. Crystals grown from CH_2Cl_2 were dark green. Yield: 0.160 g, 90%. Required for $C_4H_{10}Cl_3MoOSe_2$ (434.34): C, 11.06; H, 2.32. Found: C, 11.60; H, 2.50%. IR spectrum (Nujol, v/cm⁻¹): 960 s Mo=O, 342 s, 310 m Mo–Cl. UV/Vis spectrum (diffuse reflectance) ν/ cm^{−1}: 25 800, 21 500, 19 300, 14 600. µ_{eff}: 1.71 B.M.

$[MoOCl₃{MeSe(CH₂)₃SeMe\}]$

MoOCl₃ (0.150 g, 0.69 mmol) was suspended in CH_2Cl_2 (3 mL) and a solution of MeSe(CH₂)₃SeMe (0.158 g, 0.69 mmol) in $CH₂Cl₂$ (2 mL) was slowly added and the red/brown solution left to stir for 1 h. The brown solution was concentrated to 3 mL in vacuo and filtered and the dark brown solid isolated was dried in vacuo. A deep orange-brown crystalline solid was obtained from CH_2Cl_2 solution. Yield: 0.178 g, 58%. Required for $C_5H_{12}Cl_3MoOSe_2 \cdot CH_2Cl_2$ (533.30): C, 13.51; H, 2.65. Found: C, 13.96; H, 2.95%. IR spectrum (Nujol v/cm⁻¹): 954 s Mo=O, 346 s vbr, Mo–Cl. UV/Vis spectrum (diffuse reflectance) ν/ cm⁻¹: 32 000 sh, 2700 br, 21 400, 19 500, 14 000. µeff: 1.70 B.M.

$[(MooCl₃)₂{\bf 0}$ -C₆H₄(SeMe)₂ $]_n$

MoOCl₃ (0.150 g, 0.69 mmol) was suspended in dichloromethane (3 mL) and a solution of o -C₆H₄(SeMe)₂ (0.226 g, 0.69 mmol) in dichloromethane (2 mL) was added slowly and the dark red/brown solution left to stir for 1 h. The brown solution was then concentrated to 3 mL in vacuo, producing a brown precipitate, which was washed with OEt₂ (3×5 mL), then the brown-pink solid was dried in vacuo. Yield: 0.170 g, 53%. Required for $C_8H_{10}Cl_6Mo_2O_2Se_2$ (700.68): C, 13.71; H, 1.44. Found: C, 13.43; H, 1.53%. IR spectrum (Nujol, v/cm−¹): 999 s br Mo=O, 351 w, 302 s, 292 sh, 256 m Mo-Cl. UV/Vis spectrum (diffuse reflectance) ν /cm⁻¹: 29 500 sh, 24 900, 20 900, 14 300. μ_{eff} : 1.69 B.M./Mo.

$[\{MoOCl₂(TeMe₂)\}₂(\mu-Cl)₂]$

MoOCl₃ (0.150 g, 0.69 mmol) was suspended in toluene (3 mL) and a solution of TeMe₂ (0.217 g, 1.38 mmol) in toluene (2 mL) was added slowly and the purple solution left to stir for 1 h. The deep purple solution was concentrated to 3 mL in vacuo and filtered, then the dark brown solid was dried in vacuo. Yield: 0.203 g, 78%. Required for $C_4H_{12}Cl_6Mo_2O_2Te_2$ (751.93): C, 6.39; H, 1.61. Found: C, 6.76; H, 2.06%. IR spectrum (Nujol, v/cm^{−1}): 985 s br Mo=−O, 327, 302 s br, 256 m Mo–Cl. UV/Vis spectrum (diffuse reflectance) ν/cm−¹ : 34 500, 29 700 sh, 27 150, 26 100, 20 900, 19 500, 14 400. μeff: 1.68 B.M./ Mo.

$[(\text{MoOCl}_3)_2\{\text{MeTe}(\text{CH}_2)_3\text{TeMe}\}]_n$

MoOCl3 (0.150 g, 0.69 mmol) was suspended in dichloromethane (3 mL) and a solution of MeTe(CH₂)₃TeMe (0.217 g, 0.69 mmol) in dichloromethane (2 mL) was added slowly and the brown solution left to stir for 1 h. The brown solution was concentrated to 3 mL in vacuo, producing a brown precipitate which was washed with OEt₂ (3×5 mL), then the dark brown solid was dried in vacuo. Yield: 0.322 g, 61%. Required for $C_5H_{12}Cl_6Mo_2O_2Te_2$ (763.95): C, 7.86; H, 1.58. Found: C, 7.20; H, 1.38%. IR spectrum (Nujol, v/cm^{−1}): 988 m Mo=O, 303 s, 292 m, 249 m Mo–Cl. UV/Vis spectrum (diffuse reflectance) ν/ cm−¹ : 26 500, 21 700, 18 600, ∼13 000. μeff: 1.68 B.M./Mo.

$[(MooCl₃)₂{\bf 0}$ -C₆H₄(TeMe)₂ $]_n$

MoOCl3 (0.150 g, 0.69 mmol) was suspended in dichloromethane (3 mL) and a solution of o -C₆H₄(TeMe)₂ (0.249 g, 0.69 mmol) in dichloromethane (2 mL) was added slowly and the dark brown solution left to stir for 1 h. The brown solution was concentrated to 3 mL in vacuo, producing a brown precipitate which was washed with OEt₂ (3×5 mL), and dried in vacuo. Yield: 0.285 g, 52%. Required for $C_8H_{10}Cl_6Mo_2O_2Te_2$ (797.96): C, 12.04; H, 1.26. Found: C, 12.27; H, 1.43%. IR spectrum (Nujol, v/cm^{−1}): 992 s br Mo=−O, 343 m, 328 m, 302 s, 254 m Mo–Cl. UV/Vis spectrum (diffuse reflectance) ν /cm⁻¹: 32 500, 25 000 sh, 21 000, 19 200, 14 500. μeff: 1.70 B.M./Mo.

fac - $[MoOCl₃(PMe₃)₂]$

 $\left[\text{MoOCl}_{3}(\text{thf})_{2}\right]$ (0.150 g, 0.41 mmol) was suspended in CH₂Cl₂ (3 mL) and a solution of PMe₃ (0.063 g, 0.82 mmol) in CH_2Cl_2 (3 mL) was added slowly and the dark green solution left to stir for 1 h. The red solution produced was then concentrated to 3 mL in vacuo and filtered, and the red solid dried in vacuo. Yield: 0.047 g, 31%. Required for $C_6H_{18}Cl_3MoOP_2$ (370.45): C, 19.45; H, 4.90. Found: C, 19.28; H, 4.74%. IR spectrum (Nujol, v/cm^{−1}): 957 s Mo=−O, 352 sh, 324 s, 305 m Mo−Cl. UV/Vis spectrum (diffuse reflectance) ν /cm⁻¹: 29 600, 26 500, 21 600, 20 500 sh, 15 500.

$frac$ [MoOCl₃{Me₂P(CH₂)₂PMe₂}]

 $\left[\text{MoOCl}_{3}(\text{thf})_{2}\right]$ (0.150 g, 0.41 mmol) was suspended in CH₂Cl₂ (3 mL) and a solution of $Me₂PCH₂CH₂PMe₂$ (0.165 g, 0.41 mmol) in CH_2Cl_2 (3 mL) was added slowly and the solu-

tion left to stir for 1 h. The was concentrated to 3 mL in vacuo, filtered and then the solid was dried in vacuo. Yield: 0.131 g, 81%. Required for $C_6H_{16}Cl_3MoOP_2$ (368.44): C, 19.56; H, 4.38. Found: C, 19.83; H, 4.26%. IR spectrum (Nujol, v/cm−¹): 951 s Mo=O, 362 m, 325 s, 306 s Mo-Cl. UV/Vis spectrum (diffuse reflectance) ν/cm−¹ : 29 600, 26 500 sh, 21 600, 20 000, 15 500. μ_{eff} : 1.72 B.M.

X-ray experimental

Crystals were grown from slow evaporation of saturated solutions in CH_2Cl_2 or by liquid–liquid diffusion using CH_2Cl_2 and hexane. Data collections used a Rigaku AFC12 goniometer equipped with an enhanced sensitivity (HG) Saturn724+ detector mounted at the window of an FR-E+ SuperBright molybdenum (λ = 0.71073 Å) rotating anode generator with VHF Varimax optics (70 micron focus) with the crystal held at 100 K (N_2) cryostream). Crystallographic parameters are presented in Table S1.† Structure solution and refinement were performed using SHELX(T)-2018/2, SHELX-2018/3 through $Olex2^{44}$ and were mostly straightforward. H atoms were added and refined with a riding model. Where additional restraints were required, details are provided in the cif file for each structure found on CCDC. **Calcer Commons Articles** (March 2011)

(March 2021), $\frac{1}{2}$ (March 2021),

Conclusions

A range of $MoOCl₃$ complexes with thio- and seleno-ethers have been prepared from $[MoOCl₃(thf)₂]$ and the ligands in anhydrous CH_2Cl_2 solution. The more weakly coordinating $PhS(CH_2)_2SPh$, SMe_2 and Sem_e fail to displace the thf, but complexes of these can be obtained using a suspension of $MoOCl₃$ in $CH₂Cl₂$. The reaction of $MoOCl₄$ with dithioethers results in reduction to $Mo(v)$ as $[MoOCl₃(dithioether)],$ behaviour which contrasts with that of $WOCl₄$ or $WSCI₄$, where either $W(v)$ or $W(v)$ complexes can be obtained depending upon the reaction conditions.¹⁸ The stabilising effect of two $oxido-groups on molybdenum(w)$ is shown by the successful isolation of $[M_0O_2X_2(dithioether)]$ (X = Cl or Br).^{12,13} The limited affinity of the hard MoOCl₃ for the weaker donor monochalcogenoethers is reflected in the formation of 1:1 adducts, which achieve six-coordination by forming chloride bridges, as in $\frac{[\text{MoOCl}_2(E'Me_2)]_2(\mu\text{-}Cl)_2]}{E' = S}$, Se), rather than by coordinating a second neutral donor ligand. The same explanation accounts for the formation of oligomeric complexes, $[(\text{MoOCl}_3)_2(\text{L–L})]_n$ with o -C₆H₄(SeMe)₂, o -C₆H₄(TeMe)₂ and MeTe $(CH_2)_3$ TeMe, postulated to have a structure with only one chalcogen donor atom on each molybdenum, and where six-coordination is achieved via bridging chlorides and bridging dichalcogenoethers (Scheme 1). Although bridging behaviour might seem unexpected for chelates with $o-C_6H_4$ -backbones, the presence of aryl groups makes these ligands weaker donors to hard metal centres – compare $PhS(CH_2)_2$ SPh and $PrS(CH_2)_2S^i$ Pr. There are several literature examples of o-phe-

nylene-based dichalcogenoethers adopting a bridging coordination mode.^{30–32} The behaviour contrasts with that of o -C₆H₄based group 15 ligands, where $o\text{-}C_6H_4(PMe_2)_2$ or o -C₆H₄(AsMe₂)₂ can produce seven- or eight-coordination in tungsten(v_I) complexes, such as $[WOCl_4[o-C_6H_4(PMe_2)_2]$ or $[\text{WF}_4\{\text{o}\text{-C}_6\text{H}_4(\text{PMe}_2)_2\}_2]^{2^+}.^{45,46}$ The present work has also reported the first examples of Mo(V) telluroether complexes. Although the large soft tellurium centres are not usually thought to be good ligands for high valent d-block metals, a range of compounds has been reported in the last few years, including examples with $NbCl₄$ ⁴⁷ $NbCl₅^{48}$ and $TaCl₅$ ⁴⁸ although the complexes reported here are the first examples in Group 6. Also notable is the X-ray structural characterisation of the mixed valence $\mathrm{[Mo^{IV}Cl}\{o\text{-}C_6H_4(TeMe)_2\}_2(\mu\text{-}O)Mo^V OCl_4\}$ and of the diphosphine analogue $\left[Mo^{IV}Cl\{Me_2P(CH_2)_2PMe_2\}_2(\mu-O)\right]$ (Mo^VOCl₄)]; complexes of the latter type were reported in the 1970s^{7,8} but this is the first structural authentication. Paper More component of the distribution of the March 2021. By the March 2021. Downloaded on 10:42 ² The March 2021. The March 2021. The March 2021. The Creative Commons are the History 10:42 March 2021. The This articl

The work has provided detailed characterisation of MoOCl₃chalocogenoether complexes, and comparison with the $W(v)$ and $W(v)$ analogues, and lays the basis for exploration of corresponding molybdenum sulfide chloride complexes,¹⁹ which may provide single source LPCVD reagents for deposition of $MoS₂$ thin films. The sulfide chloride systems will form the basis of future work.

Conflicts of interest

The authors have no conflicts to declare.

Acknowledgements

We thank the EPSRC for support (EP/P025137/1) and for a studentship to D. E. S. (EP/N509747/1).

References

- 1 E. I. Stiefel, Prog. Inorg. Chem., 1977, 22, 1.
- 2 E. I. Stiefel, Comprehensive Coordination Chemistry, ed. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Pergamon, Oxford, 1987, ch. 36.5, pp. 1375.
- 3 C. D. Garner and J. M. Charnock, Comprehensive Coordination Chemistry, ed. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Pergamon, Oxford, 1987, ch. 36.4, pp. 1329.
- 4 C. G. Young, Comprehensive Coordination Chemistry II, ed. J. A. McCleverty and T. J. Meyer, Elsevier, Oxford, 2004, vol. 4, pp. 415.
- 5 C. D. Garner, Comprehensive Coordination Chemistry, ed. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Pergamon, Oxford, 1987, ch. 36.6, pp. 1421.
- 6 Molybdenum and Tungsten: Their Roles in Biological Processes, ed. A. Sigel and H. Sigel, Marcel Dekker, New York, 2002.
- 7 A. V. Butcher and J. Chatt, J. Chem. Soc. A, 1971, 2356.
- 8 W. Levason, C. A. McAuliffe and B. J. Sayle, J. Chem. Soc., Dalton Trans., 1976, 1177.
- 9 C. A. McAuliffe, B. J. Sayle and W. Levason, J. Chem. Soc., Dalton Trans., 1977, 2055.
- 10 R. A. Isovitsch, F. R. Fronczec and A. W. Maverick, Polyhedron, 1998, 17, 1617.
- 11 C. Limberg, M. Buechner, K. Heinze and O. Walter, Inorg. Chem., 1997, 36, 872.
- 12 M. D. Brown, M. B. Hursthouse, W. Levason, R. Ratnani and G. Reid, Dalton Trans., 2004, 2487.
- 13 M. F. Davis, W. Levason, M. E. Light, R. Ratnani, G. Reid, K. Saraswat and M. Webster, Eur. J. Inorg. Chem., 2007, 1903.
- 14 D. Sevdic and I. Fekete, Inorg. Chim. Acta, 1982, 57, 111.
- 15 C. A. McAuliffe and B. J. Sayle, Inorg. Chim. Acta, 1978, 30, 35.
- 16 W. Levason, C. A. McAuliffe, F. P. McCullough, S. G. Murray and C. A. Rice, Inorg. Chim. Acta, 1977, 22, 227.
- 17 C. A. McAuliffe and B. J. Sayle, Inorg. Chim. Acta, 1982, 64, L19.
- 18 D. E. Smith, V. K. Greenacre, A. L. Hector, R. Huang, W. Levason, G. Reid, F. Robinson and S. Thomas, Dalton Trans., 2020, 49, 2496.
- 19 V. K. Greenacre, W. Levason, G. Reid and D. E. Smith, Coord. Chem. Rev., 2020, 424, 213512.
- 20 S. M. Islam, K. S. Subrahmanyam, C. D. Malliakis and M. G. Kanatzidis, Chem. Mater., 2014, 26, 5151.
- 21 V. C. Gibson, T. P. Kee and A. Shaw, Polyhedron, 1990, 9, 2293.
- 22 G. W. A. Fowles, R. J. Hobson, D. A. Rice and K. J. Shanton, J. Chem. Soc., Chem. Commun., 1976, 552.
- 23 M. I. Larson and F. W. Moore, Inorg. Chem., 1966, 5, 801.
- 24 B. N. Figgis and J. Lewis, Prog. Inorg. Chem., 1967, 6, 1.
- 25 A. B. P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, 1984.
- 26 A. Westphal, H. Broda, P. Kurz, F. Neese and F. Tuczek, Inorg. Chem., 2012, 51, 5748.
- 27 S. Dolci, F. Marchetti, G. Pampaloni and S. Zacchini, Eur. J. Inorg. Chem., 2013, 1371.
- 28 L. Favero, F. Marchetti, G. Pampaloni and S. Zacchini, Dalton Trans., 2014, 43, 495.
- 29 F. Marchetti, G. Pampaloni and S. Zacchini, Dalton Trans., 2013, 42, 2477.
- 30 J. R. Black, N. R. Champness, W. Levason and G. Reid, Inorg. Chem., 1996, 35, 1820.
- 31 W. Levason, S. Maheshwari, R. Ratnani, G. Reid, M. Webster and W. Zhang, Inorg. Chem., 2010, 49, 9036.
- 32 A. L. Hector, A. Jolleys, W. Levason and G. Reid, Dalton Trans., 2012, 41, 10988.
- 33 W. Levason, S. D. Orchard and G. Reid, Coord. Chem. Rev., 2002, 225, 159.
- 34 A. J. Barton, W. Levason and G. Reid, J. Organomet. Chem., 1999, 597, 235.
- 35 G. Parkin, Chem. Rev., 1993, 93, 887.
- 36 N. Kuhn, P. Faupel and E. Zauder, J. Organomet. Chem., 1986, 302, C4.
- 37 F. R. Hartley, S. G. Murray, W. Levason, H. E. Soutter and C. A. McAuliffe, Inorg. Chim. Acta, 1979, 265, 35.
- 38 D. J. Gulliver, E. G. Hope, W. Levason, S. G. Murray, D. M. Potter and G. L. Marshall, J. Chem. Soc., Perkin Trans. 2, 1984, 429.
- 39 E. G. Hope, T. Kemmitt and W. Levason, J. Chem. Soc., Perkin Trans. 2, 1987, 487.
- 40 T. Kemmitt and W. Levason, Organometallics, 1989, 8, 1303.
- 41 E. G. Hope, T. Kemmitt and W. Levason, Organometallics, 1988, 7, 78.
- 42 V. C. Gibson, A. Shaw and D. N. Williams, Polyhedron, 1989, 8, 549.
- 43 K. Feenan and G. W. A. Fowles, Inorg. Chem., 1962, 4, 310.
- 44 (a) G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3; (b) G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112; (c) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339. Open Access Article. Published on 03 March 2021. Downloaded on 10/3/2024 10:40:12 PM. This article is licensed under a [Creative Commons Attribution 3.0 Unported Licence.](http://creativecommons.org/licenses/by/3.0/) **[View Article Online](https://doi.org/10.1039/d1dt00038a)**
	- 45 W. Levason, G. Reid, D. E. Smith and W. Zhang, Polyhedron, 2020, 179, 114372.
	- 46 W. Levason, F. M. Monzittu, G. Reid and W. Zhang, Chem. Commun., 2018, 54, 11681.
	- 47 Y.-P. Chang, W. Levason, M. E. Light and G. Reid, Dalton Trans., 2016, 45, 16262.
	- 48 S. L. Benjamin, Y.-P. Chang, C. Gurnani, A. L. Hector, M. Huggon, W. Levason and G. Reid, Dalton Trans., 2014, 43, 16640.