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Polarized Raman spectroscopy in low-symmetry
2D materials: angle-resolved experiments
and complex number tensor elements
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In this perspective review, we discuss the power of polarized Raman spectroscopy to study optically

anisotropic 2D materials, belonging to the orthorhombic, monoclinic and triclinic crystal families. We

start by showing that the polarization dependence of the peak intensities is described by the Raman

tensor that is unique for each phonon mode, and then we discuss how to determine the tensor

elements from the angle-resolved polarized measurements by analyzing the intensities in both the

parallel- and cross-polarized scattering configurations. We present specific examples of orthorhombic

black phosphorus and monoclinic 1T0-MoTe2, where the Raman tensors have null elements and their

principal axes coincide with the crystallographic ones, followed by a discussion on the results for triclinic

ReS2 and ReSe2, where the axes of the Raman tensor do not coincide with the crystallographic axes and

all elements are non-zero. We show that the Raman tensor elements are, in general, given by complex

numbers and that phase differences between tensor elements are needed to describe the experimental

results. We discuss the dependence of the Raman tensors on the excitation laser energy and thickness

of the sample within the framework of the quantum model for the Raman intensities. We show that the

wavevector dependence of the electron–phonon interaction is essential for explaining the distinct

Raman tensor for each phonon mode. Finally, we close with our concluding remarks and perspectives

to be explored using angle-resolved polarized Raman spectroscopy in optically anisotropic 2D materials.
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1 Introduction

It is remarkable how the science of 2D materials has progressed
since the isolation of graphene in 2004.1 Since then, a wide
family of 2D materials has been uncovered and more are yet
to be discovered.2–4 Knowledge from 3D systems has been
spanned and explored in 2D materials, revealing the interesting
physics limited to the atomic layer of 2D materials. There is a
vast diversity of physical properties in the 2D family such as
the wide range of electronic band gaps, ranging from semi-
metallics to insulators.3,4 In low-symmetry 2D materials, crys-
talline symmetry structures play an important role since their
optical, electronic and thermal properties are anisotropic in the
layer plane.5,6

A crystal can be classified into one of the six families of
symmetry:7–9 cubic, hexagonal, tetragonal, orthorhombic, mono-
clinic and triclinic. This classification is based on the lengths
and directions of the unitary vectors of the crystalline unit cell.
A 2D material can belong to different families of symmetries.
For instance, 2D transition metal dichalcogenides (TMDs) with a
chemical formula MX2 (M is the transition metal and X is the
chalcogen atom) can be found in different symmetry crystalline
structures depending on the type and arrangement of the metal
and chalcogen atoms and on the stacking of the different
layers.10 Besides, some 2D TMDs such as MoS2, MoTe2, and
WTe2 exhibit a structural polymorphism, meaning that they can
exhibit different crystalline structures. For example, the MoS2

crystal can be arranged in hexagonal, tetragonal and ortho-
rhombic structures.3,5,11

The 2D family also involves a large number of crystals made
of different chemical elements and atomic structure, including
h-BN, black phosphorus, transition metal monochalcogenides
(MX, M = Ge, Sn; X = S, Se), transition metal trichalcogenides
(MX3, M = Ti, Zr, Hf; X = S, Se, Te), group IV–V compounds
(e.g., SiP, GeP, SiAs, GeAs and GeAs2), group III–VI compounds
(GaSe and InSe, GaTe), and ternary transition metal chalcogenides

(i.e., Ta2NiS5, TaIrTe4), among others. The low-symmetry 2D
materials exhibit intriguing anisotropic in-plane electrical, optical,
magnetic and phonon properties,12–22 and offer the opportunity to
perform fundamental studies and be used in devices based on the
anisotropic properties of electrons and phonons.

Raman spectroscopy is one of the most powerful tools to
probe the fundamental properties of phonons and electrons in
crystals. This technique has been widespread to characterize 3D
semiconductors such as silicon,23–25 germanium,26,27 SiGe,28,29

GaAs30,31 and GaN,32 to name a few. Based on this develop-
ment, Raman spectroscopy has been spanned to study 2D
materials.33–36 Moreover, the possibility of tuning the excitation
energy and performing resonant Raman spectroscopy provide
further information about the electrons, phonons and their
coupling in these systems.35,37–41 Although this technique has
progressed through the years, it is essential to control different
parameters of the experimental setup and data analysis treat-
ment in order to understand the basic mechanism behind the
Raman scattering process. In general, one needs to pay atten-
tion to the excitation energy, number of atomic layers, experi-
mental polarized configuration, calibration and normalization
of the spectra, and interference effects on the substrate, among
others. In the case of low-symmetry 2D systems, we perform
angle-resolved Raman measurements by controlling and chan-
ging the direction of polarization of the incident and scattered
light with respect to the crystallographic axes. We will discuss
in this work how the analysis of the angle-resolved experiments
provides the determination of the Raman tensor elements of
the crystal.19–21,42,43

The Raman tensor is unique for each Raman-active mode
and allows complete characterization of a given Raman peak
intensity as a function of polarization of the incident and
scattered light. Nowadays, there is growing interest in the study
of optically anisotropic 2D materials by angle-resolved polari-
zed Raman spectroscopy since the unusual results in layered
black phosphorus (BP) were explained by Ribeiro et al.21
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considering that the Raman tensor elements are complex num-
bers and that phase differences between elements are needed to
fit the experimental results. Ling et al.44 showed later that the
tensor elements are strongly dependent on the flake thickness
and the excitation energy, while Phaneuf-L’Heureux et al.45

determined the Raman tensors of few-layered BP (with 2, 3, 4,
and 5 layers) using angle-resolved polarized Raman spectro-
scopy. Mao et al.46 performed polarized and resonance Raman
measurements in the visible and ultraviolet energy ranges and
observed from the Raman excitation profiles that the electron–
phonon coupling in BP is symmetry-dependent. Also, Lin et al.47

used normal and oblique laser incidences to study black phos-
phorus and used depth-dependent polarized results to show
that the Raman response is affected by birefringence, linear
dichroism and interference effects in the multilayered struc-
tures. Zhu et al.48 performed angle-resolved polarized Raman
measurements on both the basal and cross planes of black
phosphorus and obtained the Raman tensors from the polarized
spectra taken along the different crystal axes. Sriv et al.49 used
polarized Raman spectroscopy with six different excitation ener-
gies to study the optical phonons in layered semiconductor
alloys SnSe(1�x)Sx and observed distinct behavior for different
symmetry modes. Wang et al.50 performed an angle-resolved
Raman study of monoclinic 1T0-MoTe2 and obtained the Raman
tensors using the excitation energies of 1.96 eV and 2.33 eV.
Choi et al.51 investigated the angle-resolved polarized Raman
response of few-layered ReS2 and ReSe2 and showed that it can
distinguish the ‘‘up’’ and ‘‘down’’ orientations of the sample.
Resende et al.19 performed angle-dependent polarized Raman
spectroscopy of single-layer triclinic ReSe2, obtained the Raman
tensor elements of all Raman modes, and explained the different
behavior for each mode as due to the anisotropy of the electron–
phonon coupling in low-symmetry 2D materials. Recently,
Yu et al.52 used angle-resolved polarized Raman spectroscopy
to study argon ion bombarded ReS2 samples and established the
relationship between defect density and anisotropy.

There is widespread interest in unveiling the properties of
optically anisotropic 2D materials and angle-resolved polarized
Raman spectroscopy is a key to achieve this. In this context, we
discuss in this perspective review the Raman tensor and the
experimental setup used to determine its elements in low-
symmetry 2D systems. We focus on the orthorhombic, mono-
clinic and triclinic symmetry classes discussing an example of
each one of them. Interestingly, we show that some Raman
modes in low-symmetry structures need to be adjusted by
complex tensor elements. Therefore, a discussion of the real
and imaginary parts of the Raman tensor elements is presented
considering the quantum formalism for the Raman process.
Finally, we shortly discuss some recent developments on the
resonant angle-resolved Raman measurements in these low-
symmetry structures that still need to be further explored.

1.1 The tensorial nature of the Raman intensity

When an incident laser beam hits the surface of a crystal, the
electric field Ei of the incident light induces a polarization
vector P in the material medium that can be written in terms of

the incident field, in the linear regime, by the expression,53,54

P ¼ e0
$w � Ei; (1)

where e0 is the electric permittivity of free space and $w is the
second-rank tensor electric susceptibility that accounts for the
fact that the vectors P and Ei are not necessarily parallel. The
induced oscillating polarization will emit light in different
directions originating the scattering of light. Most of the light
is elastically scattered but a small fraction of the light is
inelastically scattered due to the creation or destruction of
quanta of vibrations (phonons), giving rise to the Raman
scattering process. Each cartesian component wij of the electric
susceptibility tensor can be modulated by a vibrational mode m
described by the generalized normal coordinate qm. The depen-
dence of the elements wij on the normal coordinates qm can be
expanded using a Taylor series in the normal coordinates.54,55

The zeroth-order term of the Taylor series brings forth the
Rayleigh (or elastic) scattering contribution (w0

ij) and the first-
order term produces the Raman tensor elements written as,53,54

R
m
ij ¼

@wij
@qm

� �����
0

; (2)

where i, j = x,y,z, and the derivative of wij is taken at the
equilibrium position of the generalized coordinate (qm = 0).
It is important to emphasize that, even if a given element of wij

is zero by symmetry requirements, its derivative (Rm
ij) can be

different from zero.
If the incident light is polarized along the direction of the

unitary vector êi, the light scattered by phonons in crystals can
exhibit different polarization. If we consider only the light
scattered with polarization along the unitary vector ês, as shown in
Fig. 1a, the theory of light scattering shows that the Raman intensity
Im of the light scattered by a phonon m is proportional to53,54

Im / êi � R$m � ês
��� ���2; (3)

where R
$m is the second-rank Raman tensor, specific for each

Raman-active phonon m. The symbol of proportionality in
eqn (3) accounts for the fact that the experimental intensity
also depends on instrumental parameters (see Fig. 1b), such as
the efficiency of the spectrometer, the numerical aperture of the
objective, intensity of the incident light, among others. The
polarization vector êi of the incident light can be represented by
a 1 � 3 row matrix, the polarization vector ês of the scattered
light can be represented by a 3 � 1 column matrix, and eqn (3)
can be rewritten as:53,54

Im / eix eiy eiz

� �
�

Rm
xx Rm

xy Rm
xz

Rm
xy Rm

yy Rm
yz

Rm
xz Rm

yz Rm
zz

0
BBB@

1
CCCA �

esx

esy

esz

0
BBB@

1
CCCA

���������

���������

2

: (4)

1.2 Classical formalism and complex Raman tensor elements

The simplest model for the classical electric susceptibility consi-
ders a damped oscillating electric dipole, with a resonance
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frequency o0 and damping constant g, forced to vibrate by the
external electric field of the incident light, oscillating with a
frequency oi. In this case, the electric susceptibility can be
written as,53,54

wðoiÞ ¼
Ne2

me0
� 1

ðoi
2 � o0

2 þ igoiÞ
; (5)

where m and e are, respectively, the mass and charge of an
electron and N is the number of dipoles per unit volume. Far
away from the resonance frequencies (oi { o0 or oi c o0), the
susceptibility is given by a real number since (oi

2 � o0
2) c go

and the imaginary term in the denominator can be neglected.
On the other hand, we can see from eqn (5) that near the
resonance the susceptibility has a complex value and can be
expressed as,53,54

w(o) = w0(o) + iw00(o), (6)

where w0(o) and w00(o) are the real and imaginary parts of w(o).
In this case, the Raman tensor elements, obtained by differ-
entiating each component wij of the susceptibility tensor with
respect to the generalized coordinate qm (see eqn (2)), are also
represented by complex numbers and can be written as,53,54

R
m
ij ¼ R

m 0
ij þ iR

m00
ij ¼

@w
0
ij

@qm

 !�����
0

þi
@w
00
ij

@qm

 !�����
0

: (7)

The Raman tensor element can also be expressed in the
complex polar plane as,53,54

Rm
ij ¼ Rm

ij

��� ���eifm
ij ; (8)

where Rm
ij

��� ��� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rm 0

ij

� �2
þ Rm00

ij

� �2r
is the modulus of the element

and fm
ij ¼ arctan

Rm00
ij

R
m 0
ij

 !
is its phase.53,54 In fact, as discussed

below, we can only obtain the phase differences between the
Raman tensor elements and this effect is only observed for
the totally symmetric modes in low-symmetry systems. The
complex nature of the Raman tensor elements has been reported
in different systems of low-symmetry 2D materials19,21,44,45,51,56–59

For transparent 3D crystals, phase differences between tensor
elements can also be associated with birefringence60 and, in this
case, the phase difference is the same for all different Raman
modes. Moreover, the birefringence contribution for the phase
differences is only appreciable if the material’s thickness is
greater than the wavelength of the incident light, and this effect
is negligible in 2D systems with few atomic layers.60 As discussed
below, the observation of phase differences in single-layer low-
symmetry materials is due to the resonance Raman effect, which
is affected by the electron–phonon interaction, thus being
specific for each Raman mode.

The electric susceptibility carries the symmetry properties of
the kinetic coefficients given by wij(o) = wji(o), which is derived
from Onsager’s principle.54 Since the Raman tensor is given by
the derivative of susceptibility with respect to the normal
modes (see eqn (2)), it will also carry the property Rij(o) = Rji(o)
if the medium is non-magnetic and if we neglect the slight
frequency difference between the incident and scattered
photon.54 An important consequence of the symmetry properties
in the Raman tensor is the fact that the Raman tensor is not a
Hermitian matrix. Therefore, we cannot diagonalize the Raman
tensor when the elements are given by complex numbers. The

orthogonal basis that diagonalizes the real part Rm 0
ij does not

diagonalize the imaginary part Rm00
ij .

1.3 The quantum model for the Raman tensor

In this section, we will discuss the physical origin of the Raman
tensor elements within the framework of the quantum model
for the Raman effect, which is explained by the third-order
process illustrated in Fig. 2a. In this approximation, we take
explicitly into account not only the two optical transitions
associated with the electron–hole creation and recombination,
but also the quantum process associated with the creation or
destruction of quanta of vibrations (phonons in crystals).53,54,61

The Raman process starts with an optical transition from
the electronic initial state |cvi in the valence band to the first
intermediate state |cci in the conduction band; the creation (or
destruction) of a vibrational quantum (phonon in a crystal)

Fig. 1 Schematic of the Raman experiment setup. (a) Schematic of the light–matter interaction giving rise to the Raman scattering process. (b)
Schematic of the experimental setup for a polarized Raman measurement.
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takes the system to the second intermediate state |cc 0i; finally,
an optical transition is related to the electron–hole recombi-
nation, leaving the system in the initial electronic state |cvi
and giving rise to the scattered photon. The optical transitions
are induced by the electron-radiation Hamiltonian (Hel-rad),
and the creation of a phonon is induced by the electron–
phonon Hamiltonian (Hel–ph). We will consider here the
electric-dipole approximation for the electron-radiation
Hamiltonian, which can be written as Hel-rad = �d�E, where d
is the electric-dipole operator and E is the electric field of the
radiation, which is polarized along the direction of the unitary
vector ê.

The Raman intensity by a phonon belonging to branch m is
related to the probability of occurrence of the process illu-
strated in Fig. 2a, and is calculated by means of the Fermi
golden rule transition probability for the third-order time-
dependent perturbation process.53,54 In this approximation,
the Raman tensor element Rm

ij depends on the excitation energy
EL according to the expression:53,54

where V is the crystal volume. The sums in eqn (9) are
performed over all electronic wavevectors k within the first
Brillouin zone and over the electronic branches v, c and c0 in
the valence and conduction bands. We only consider zone-
center Raman-active phonons with wavevector q = 0. The three
terms in the numerator correspond to the matrix elements of
the three processes: from right to left, hcc(k)|Ei�d|cv(k)i corre-
sponds to the matrix element of the absorption of light and
creation of an electron–hole pair, from the initial state |cv(k)i
in the valence band to the first intermediate state |cc(k)i in
the conduction band; hcc0(k)|Hm

el–ph|cc(k)i corresponds to the
matrix element of the electron–phonon (el–ph) interaction that
scatters the carriers from the first excited state |cc(k)i to the

second excited state c
0
cðkÞ

��� E
in the conduction band; and

hcv(k)|Ej�d|cc0(k)i corresponds to the matrix element of the

optical transition associated with the recombination of the
electron–hole pair and emission of the scattered photon.
In the denominator, Ecv(k) = Ec(k) � Ev(k) and Ec0v(k) =
Ec0(k) � Ev(k) are the energy differences between the valence
and conduction bands at a given wavevector k, Gc and Gc0 are
the damping constants associated with the finite lifetime t =
h�/2G of the photo-excited states |cc(k)i and |cc0(k)i, respec-
tively, and Em

ph is the energy of phonon m.19 The contribution of
a specific process with wavevector k is inversely proportional to
the difference EL � Ecv(k) that appears in the denominator of
eqn (9).

Let us consider the simplest particular case in eqn (9), where
we ignore the two sums by restricting the optical transitions to
one specific point k in the Brillouin zone and considering only
one electronic state in the valence band (|cv(k)i), only one
excited state in the conduction band (|cc(k)i), and Ecv(k) = DE.
In this case, the phase fm

ij of the complex tensor element Rm
ij is

given by:19

fm
ij ¼ arctan

Rm00
ij

Rm 0
ij

 !

¼ arctan
�G½2ðEL � DEÞ � Eph�

ðEL � DEÞðEL � DE � EphÞ � G2

� 	
: (10)

Eqn (10) shows that the phase fm
ij of the Raman tensor elements

depends on different parameters, such as the excitation laser
energy EL, the energy gap DE, the damping constant G and the
phonon frequency Eph, even in the simplest situation where the
two sums in eqn (9) are ignored. Fig. 2b shows the plot of fm

ij as
a function of the difference (EL � DE), which is negative when
the excitation energy EL is below the bandgap energy DE,
positive when the excitation energy is above DE, and zero
under resonance conditions. The curves in Fig. 2b were plotted

Fig. 2 Quantum framework of the Raman tensor. (a) Feynman diagram of the quantum Raman scattering process. Calculated phase of the tensor
element in the quantum framework (eqn (10)) considering the fixed values of the (b) phonon energy (Eph = 0.025 eV) and (c) damping (G = 0.12 eV).

R
m
ijðELÞ ¼

1

V

X
v;c;c 0

X
k

hcvðkÞjEj � djcc 0 ðkÞihcc0 ðkÞjH
m
el�phjccðkÞihccðkÞjEi � djcvðkÞi

½EL � EcvðkÞ þ iGc�½ðEL � Em
ph � Ec 0vðkÞ þ iGc 0 �

; (9)
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considering three different values of G = 0.06 eV, 0.12 eV and
0.18 eV, which correspond to the typical values found in the
literature,20,51 and considering the phonon energy Eph = 0.025 eV
which corresponds to the average energy of the Raman-active
phonons of ReSe2. We can observe in Fig. 2b that fm

ij tends to zero
far below resonance, tends to 3601 far above resonance and fm

ij E
1801 under resonance conditions. Fig. 2b also shows that, near
resonance, the phase fm

ij depends significantly on the value of the
damping constant G. Fig. 2c shows the plot of fm

ij considering
three different values of the phonon energy Eph = 0.025 eV,
0.050 eV and 0.100 eV and fixing the value of G = 0.12 eV. Notice
now that the phase is only weakly dependent on the phonon energy.

1.4 Raman tensors of low-symmetry 2D materials

The most studied 2D materials, such as graphene and the
semiconducting MoS2-type transition metal dichalcogenides,
belong to the hexagonal crystal family, where the 6-fold or
3-fold symmetry is perpendicular to the layer plane.7,9 For these
materials, the linear optical properties described by second-
rank tensors are isotropic in the layer plane. In particular, their
Raman spectrum is isotropic since the intensity of the Raman
peaks do not depend on the direction of polarization of the
light with respect to the crystallographic axes.62

In the last years, several low-symmetry 2D materials from
the orthorhombic,63–66 monoclinic67,68 and triclinic69,70 crystal
families are being explored, and some examples are shown in
Fig. 3. In these three families, the three crystallographic axes a,
b, and c have unequal lengths. For the orthorhombic family, the
three axes a, b, and c are perpendicular to each other.7–9 For the
monoclinic family, one axis, say the a-axis, is perpendicular to
the b-axis and c-axis, but the b-axis and c-axis are not perpendi-
cular to each other.7–9 In the case of 2D monoclinic crystals, we
have two possibilities: the a-axis can be in the plane of the layer
or perpendicular to it.7–9 For the triclinic system, the three axes
are inclined at non-orthogonal (non-perpendicular) angles rela-
tive to each other.7–9

The orthorhombic crystal family includes the point groups
D2, C2v and D2h. Table 1 shows the four Raman tensors of
the modes with different symmetries (different irreducible
representation) for each point group of the orthorhombic
crystal. Notice that in these three point groups, we have the
totally symmetric representation A, A1 or Ag for the D2, C2v and
D2h point groups, respectively, for which the Raman tensor is
diagonal and the three elements in the diagonal are different.
It also has three non-degenerate representations where the
non-null elements are the off-diagonal terms xy, yz and xz.7

Fig. 3 Classes of low-symmetry 2D materials. Crystalline structure of the low-symmetry 2D materials: orthorhombic (e.g. back phosphorus, GeAs2, SnS,
SnSe, Td-MoTe2, Td-WTe2), monoclinic (e.g. 1T0-MoTe2, 1T0-WTe2) and triclinic (ReS2, ReSe2).
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The monoclinic crystal family includes the point groups Cs, C2

and C2h. It has two Raman tensors for the modes with different
symmetries (different irreducible representation) for each point
group, as shown in Table 1. Here, we adopt the convention that the
2-fold axis is along the y-axis or the mirror plane is the xz plane.
However, the reader should be aware that Raman tensors will be
different if one adopts the convention that the 2-fold axis is along the
z-axis or the mirror plane is the xy plane.7 We can observe for the
monoclinic family that the Raman tensor of the totally symmetric
representation A, A1 and Ag for the Cs, C2 and C2h point groups,
respectively, is no longer a diagonal matrix, since the xz element is
different from zero. For the other Raman tensors of the monoclinic
systems, associated with the B, A2 and Bg modes for the Cs, C2 and C2h

point groups, respectively, the diagonal elements are null and the
non-null elements of the matrix are the off-diagonal terms xy and yz.

The triclinic crystal family includes the point groups C1 and Ci (or
S2) where the only non-trivial symmetry operation is the inversion
center.7 For the Ci point groups, the Raman-active modes belong to
the totally symmetric Ag representation. In this case, all elements of
the Raman tensor are different from zero, as shown in Table 1.

Among the vast types of low-symmetry 2D materials, this
review will focus on one material of each crystal symmetry
depicted in Fig. 3. In particular, we discuss the angle-resolved
Raman spectra of the black phosphorus, 1T0-MoTe2 and ReSe2

in the following sections.

2 Angle-resolved polarized Raman
spectra
2.1 Orthorhombic crystal: black phosphorus

Black phosphorus (BP) consists of atomically thin layers of
phosphorus atoms covalently bonded to the neighboring

atoms, forming a puckered honeycomb structure.71,72 The
atomic structure of a monolayer BP exhibits an orthorhombic
symmetry, which belongs to the D2h point (space group
Pmna).73,74 By definition of the crystallographic axes of the BP
structure,75 the a and c axes are, respectively, along the zigzag
and armchair directions, and the b axis is perpendicular to the
layer plane. A BP structure can be stacked in different
manners,76–78 with the AB-stacking configuration being the
most stable.22,77,79,80 The atomic structure of the bulk BP
stacked in the AB configuration belongs to the D2h point group,
but to the face-centered space group Cmce.81,82 In this case, the
face-centered unit cell contains 8 atoms, but the primitive cell
of the AB-stacked bulk BP only contains 4 atoms.81,83

Group theory predicts 3 acoustic and 9 optical phonon branches
for the monolayer and bulk BP, and the irreducible representations
at the Brillouin zone center (G point) are8,9 G = 2Ag " B1g " B2g "
2B3g " Au " 2B1u " 2B2u " B3u, where we considered the
definition of the crystallographic axes aforementioned. Only the
2Ag " B1g " B2g " 2B3g phonons are Raman active.22,84–87 In a
conventional back-scattering Raman configuration, where the light
polarization is in the xz plane, only the A1

g, A2
g and B2g modes are

observed in the Raman spectrum, as shown in Fig. 4. The B1g and
B3g only appear in the spectrum where the incident light has a
polarization component along the y-axis.21

The angular dependence of the polarized Raman spectra can
be performed by fixing the analyzer either parallel or perpendi-
cular to the fixed incident polarization while the sample is
rotated (see Fig. 1b).19,21,88 The polarized Raman spectra of a
bulk BP in the XX and XZ configurations are shown in Fig. 4a
and b. Notice that the intensities of the A1

g, B2g and A2
g modes

vary in these configurations. Fig. 4c and d show the angle-
resolved polarized Raman map excited with a 2.33 eV laser
energy in the parallel and crossed polarized configurations,

Table 1 Raman tensors for all Raman-active modes in low-symmetry crystals. For monoclinic crystal, the 2-fold axis is along the y-direction and the
mirror m in the xz plane

Crystal symmetry Point group Irreducible representations of the Raman modes

Orthorhombic D2 A B1 B2 B3

C2v A1 A2 B1 B2

D2h Ag B1g B2g B3g

Tensor

aeifa 0 0

0 beifb 0

0 0 ceifc

0
BBB@

1
CCCA

0 deifd 0

deifd 0 0

0 0 0

0
BBB@

1
CCCA

0 0 f eiff

0 0 0

f eiff 0 0

0
BBB@

1
CCCA

0 0 0

0 0 geifg

0 geifg 0

0
BBB@

1
CCCA

Monoclinic Cs A B
C2 A1 A2

C2h Ag Bg

Tensor

aeifa 0 f eiff

0 beifb 0

f eiff 0 ceifc

0
BBB@

1
CCCA

0 deifd 0

deifd 0 geifg

0 geifg 0

0
BBB@

1
CCCA

Triclinic Ci Ag

Tensor

aeifa deifd f eiff

deifd beifb geifg

f eiff geifg ceifc

0
BBB@

1
CCCA
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respectively. Here, the angle y is between the incident light
polarization and the x-axis, as shown in the inset of Fig. 4.
The intensities of the A1

g, B2g and A2
g modes are given by the

colorbar.21

The angular dependence of the Raman peak intensities
shown in Fig. 4c and d can be explained considering eqn (3),
the Raman tensors RAg and RB2g of the different modes, and the
polarization vectors êi and ês of the incident and scattered light,
respectively. The results shown in Fig. 4 were collected in the
back-scattering configuration where the beam of the incident
laser was along the y axis of bulk BP.21 Therefore, we only need
to consider the Raman tensor elements related to the x and z
axes, provided by the first and third rows (or columns) of the
Raman tensors shown in Table 1. Thus, we consider the 2 � 2
blocks of the Ag and B2g modes in the xz plane, given by,53,54

RAg ¼
aeifa 0

0 ceifc

 !
;RB2g ¼

0 f eiff

f eiff 0

 !
; (11)

where a, c, f 4 0 are the moduli of the tensor elements. The
incident light can be polarized in the xz plane, and the incident
polarization unit vector êi can be expressed by a 1 � 2 matrix, êi

= (cos y, sin y), with y being the angle between êi and the x-axis
(see the inset of Fig. 4b). We also need to fix the scattered light
polarization, described by the unit vector ês, to determine the
Raman tensors elements. The polarized geometries of the unit
vector ês are normally parallel and crossed (or perpendicular) to
êi, and the unit vector ês can be expressed by a 2 � 1 matrix:

ês ¼ cos y
sin y

� �
for the parallel configuration, and ês ¼

� sin y
cos y

� �
for the crossed configuration.

By introducing the expressions of the incident and scattered
polarized unit vectors and the Raman tensor in eqn (3), we can
obtain the angular dependence intensity equations for the Ag

and B2g modes in the parallel (8) and crossed (>) configura-

tions, I
Ag

k ðyÞ; I
Ag

? ðyÞ; I
B2g

k ðyÞ; and I
B2g

? ðyÞ. As an example, we

calculated the expression of the angular intensity of the Ag

mode in the crossed configuration,53,54

I
Ag

? ðyÞ / cos y sin yð Þ �
aeifa 0

0 ceifc

 !
�
� sin y

cos y

 !�����
�����
2

(12a)

¼ ða� c cos facÞ2 þ c2 sin2 fac


 �
sin2 y cos2 y; (12b)

where fac = (fc � fa) is the relative phase between the c and
a components of the Ag tensor. Therefore, using the same
procedure, the angular dependence of the Raman scattering
intensities of the Ag and B2g modes in the parallel and crossed
polarization configurations are given by,53,54

I
Ag

k ðyÞ ¼ ða cos2 yþ c cos fac sin
2 yÞ2 þ c2 sin4 y sin2 fac;

(13a)

Fig. 4 Characteristic Raman spectrum of the orthorhombic black phosphorus. Polarized Raman spectra in the (a) XX and (b) XZ configurations. Typical
angle-resolved Raman map of BP in the (c) parallel (8) and (d) crossed (>) configurations. These results are from an exfoliated BP flake. Adapted with
permission from ref. 21.
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I
Ag

? ðyÞ ¼ ½ða� c cos facÞ2 þ c2 sin2 fac� sin2 y cos2 y; (13b)

I
B2g

k ðyÞ ¼ ð2f sin y cos yÞ2; (13c)

I
B2g

? ðyÞ ¼ ð f cos 2yÞ2: (13d)

An important result is that the phase ff of the non-diagonal
term of the B2g tensor disappears when the square modulus
is taken in eqn (5). Therefore, the information regarding the
phase ff of the non-diagonal of the B2g matrix tensor is lost in
the analysis of the angle-resolved polarized Raman experiments
in orthorhombic materials.21 The same behavior is observed for
the other non-diagonal B1g and B3g tensors. Thus, information
about Raman tensor phases in orthorhombic materials can
only be obtained through the angle-resolved results of the
totally symmetric Ag modes. Moreover, the analysis of the
experimental result allows us to determine only the difference
of the diagonal elements phases fac = (fc � fa).21

To determine the Raman tensors of the A1
g, B2g and A2

g modes
of BP, we need to fit the angular dependence of I8(y) and I>(y),
shown in Fig. 5, with the same set of elements for each mode.
The curves in Fig. 5 represent the best fit of I8 and I> with the

same set of tensor elements, respectively. The dashed blue
curves represent the best fit considering only real numbers
for the tensor elements, corresponding to the situation where
the phase difference fac is zero (sinfac = 0 and cosfac = 1 in
eqn (13a) and (13b)). Note from Fig. 5 that for the totally
symmetric Ag modes, the angular dependence of I8 exhibits a
2-fold symmetry (with periodicity of 1801), with the maxima at
01 and 1801 and the minima (or secondary maxima) at 901 and
2701.21 The reason for this behavior is the fact that c/a o 1, and
the opposite trend will occur when c/a 4 1. On the other hand,
the angular dependence of the cross-polarized intensity I>
for the totally symmetric Ag modes exhibits a 4-fold symmetry
(with periodicity of 901), with maxima at 451, 1351, 2251 and
3151. For the B2g-symmetry mode, its angular dependence in
both I8 and I> exhibits a 4-fold symmetry, but the maxima of
the I8 are at 451, 1351, 2251 and 3151, whereas the maxima of the
I> are at 01, 901, 1801 and 2701. The angular dependence
behavior shown in Fig. 5 is characteristic of the orthorhombic
symmetry of the BP crystal, where the principal axes of the real
part of the susceptibility and Raman tensors are necessarily
along the crystallographic axes.7,53

The experimental results of the B2g mode shown in Fig. 5 in
both I8 and I> can be fitted by real number tensor elements, as
expected from eqn (13c) and (13d) and shown by the dashed

Fig. 5 Angle-resolved Raman response of the orthorhombic black phosphorus. Angular dependence of the intensities of the A1
g, B2g and A2

g modes in the
parallel (8, top panel) and crossed (>, bottom panel) polarization configurations for an exfoliated BP flake for an excitation energy of 2.33 eV. The
corresponding tensor element ratios and phase differences extracted from the fitting process are also shown. Adapted with permission from ref. 21.
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blue curves in Fig. 5. The results of I8 and I> for the A1
g mode

shown in Fig. 5 can also be fitted by real number elements,
since fac = 0. However, for the A2

g mode, the fit by real number
elements fails dramatically, as shown by the dashed blue curves
in Fig. 5. In this case, a phase difference fac is needed to fit the
angular dependence of both I8 and I>, as shown by the solid
pink curves for the A2

g mode in Fig. 5. The important conse-
quences of introducing the phase difference fac are the appear-
ance of a secondary maxima in the angular dependence of I8,
at 901 and 2701, and the significant enhancement of the
intensities of I> at 451, 1351, 2251 and 3151.

The angle-polarized Raman results mentioned above show
the importance of properly measuring and analysing the angle-
resolved intensities in the parallel (I8) and crossed (I>) config-
urations. The determination of tensor elements only with the
analysis of the parallel polarized intensities (I8) can lead to
misleading values for the Raman tensor elements.

2.2 Monoclinic crystals: 1T0-MoTe2 type compounds

In monoclinic crystals, one crystallographic axis is perpendi-
cular to two other axes, which are not perpendicular to each
other.7,9 The point groups that belong to the monoclinic system
are C2 (2), C1h (m) and C2h (2/m). In the case of 2D monoclinic
crystals, there are two possibilities: in one category of 2D
monoclinic crystals, the 2-fold axis is perpendicular to the layer
plane and in other case, the 2-fold axis is along the layer plane.
Here, we discuss the monoclinic 1T0 structure of TMDs which
includes MoTe2 and WTe2 and that belongs to the second
category mentioned above.

The monoclinic 1T0 structure of MoTe2 corresponds to a
distortion of the 1T structure of TMD compounds, which has
hexagonal symmetry.11 Differently from the MoS2-type TMDs,
where the layer formed by the S (chalcogens) atoms, above and
below the layer composed of Mo (transition metal) atoms, are
on the top of each other, in the 1T structure the chalcogens are
not on the top of each other, but instead rotated by 601. The
1T0-MoTe2 structure belongs to the C2h point group and to the
P121/m 1 space group. We have written the full notation for
the space group to show that the 2-fold axis is along the
y-direction. The notation 21 shows that the 2-fold axis is a
screw axis.

We need to pay attention when analysing character tables
and Raman tensors for monoclinic crystals, since the 2-fold axis
in 1T0-MoTe2 is normally considered to be the y-axis and many
textbooks assume that the 2-fold axis in monoclinic systems is
along the z-direction. Thus, considering that the 2-fold axis is
along the y-direction, the Ag symmetry Raman modes are
expected to be observed in the XX, YY, ZZ and XZ polarized
spectra, whereas the Bg modes appear in the XY and YZ spectra.
Using the conventional back-scattering configuration with the
incident light is along the z-axis, the Ag modes appear in the
XX and YY parallel polarized spectra and the Bg modes in the
crossed polarized XY spectrum.59,66,89

The unit cell of a monolayer 1T0-MoTe2 contains 6 atoms,
while in its bulk form the unit cell contains 12 atoms.68

According to group theory predictions, 9 modes are expected

to appear in the first-order Raman spectrum of monolayer 1T0-
MoTe2 (6 Ag modes and 3 Bg modes). For bulk 1T0-MoTe2, 12 Ag

modes and 6 Bg modes are predicted to appear in the first-order
Raman spectra.68

Fig. 6 shows the angle-resolved polarized Raman map of a
4 nm thick sample of 1T0-MoTe2 in the parallel (8) and crossed
(>) configurations.50 The polar plots of the intensities I8 and I>
for some Raman modes are shown in Fig. 6c. Note that in the
parallel configuration, the A2

g, A3
g, A4

g and A5
g modes have a 2-fold

symmetry with their maxima at 901 and 2701. The A1
g and A6

g

modes also exhibit a 2-fold symmetry, but their maxima are at
01 and 1801. In the case of the Bg modes, they show a 4-fold
symmetry on both configurations similarly to the B2g modes in
orthorhombic BP (see Fig. 5).

The Raman intensity for the Ag and Bg modes in the parallel
and crossed polarization configurations is given by eqn (3) and
the Raman tensor in Table 1 resulting in,53,54

I
Ag

k ðyÞ ¼ ða cos2 yþ b cos fab sin
2 yÞ2 þ c2 sin4 y sin2 fab;

(14a)

I
Ag

? ðyÞ ¼ ½ða� b cos fabÞ2 þ b2 sin2 fab� sin2 y cos2 y; (14b)

I
Bg

k ðyÞ ¼ ð2d sin y cos yÞ2; (14c)

I
Bg

? ðyÞ ¼ ðd cos 2yÞ2: (14d)

The polar plots shown in Fig. 6 were fitted using complex
Raman tensor elements,50 as shown by the black and red curves
for the parallel and crossed configurations, respectively. We can
note that the fitting of the A2

g, A3
g, and A4

g modes in the parallel
configuration exhibits secondary maxima and resembles the A2

g

mode of BP shown in Fig. 5. We can conclude that the behavior
of angle-resolved Raman measurements in 2D monoclinic
crystals where the 2-fold axis is in the layer plane is similar to
that in orthorhombic crystals. The angle-resolved Raman beha-
vior of 2D monoclinic crystals where the 2-fold axis is perpendi-
cular to the plane will be similar to that in triclinic systems,
which will be discussed in the next subsection.

2.3 Triclinic crystal: rhenium diselenide

The atomic structures of monolayer and bulk rhenium dis-
elenide (ReSe2) belong to the triclinic Ci point group,
which only has the identity and the inversion center as
symmetry operations.70,90 In both cases, the unit cell has 12
atoms (4 rhenium and 8 selenium atoms) and exhibits
diamond-shaped rhenium–rhenium bonds forming quasi-
one-dimensional chains.57,70 Group theory predicts 3 acoustic
branches and 33 optical branches in the phonon dispersion of
ReSe2, and 18 zone-center modes with the Ag symmetry are
Raman active.57,70 Fig. 7a shows the Raman spectrum of the
monolayer ReSe2, where the experimental data correspond
to the blue dots and the orange curves represent the fit by
Lorentzian curves, which allows us to identify the 18 Ag

predicted Raman modes.19
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Fig. 7b and c show the angular dependence of the polar-
ized Raman spectra of the monolayer ReSe2 in the parallel (8)
and crossed (>) configurations, respectively, where the angle
y is between the incident light polarization êi and the x-axis.
The striking difference of these maps with respect to those of
the orthorhombic and monoclinic crystals shown in Fig. 4
and 6 is the fact that the maxima and minima of both I8 and
I> in Fig. 7b and c are not at fixed angles. Instead, they are at
general angles which, in turn, are different for each mode.19

In fact, this is a consequence of the low-symmetry of the
crystal, since all elements of the Raman tensor in triclinic
systems are non-null.7 When the tensor has both diagonal
and non-diagonal terms if written in the crystallographic
axes of the systems, we can diagonalize the real part
of the tensor and determine the principal axes. In this case,
the principal axes are not along the crystallographic axes
and, in turn, are at different angles for the different Raman
modes.19

To analyze the results shown in Fig. 7, we need to introduce
in eqn (3) the Raman tensor RAg of triclinic crystals and the
polarization vectors êi and ês of the incident and scattered light,
respectively. In the back-scattering geometry used in ref. 19,
only the components of the first 2 � 2 block matrix associated
with the x and y coordinates need to be considered since the
laser beam is along the z-direction. The term aeifa can be put in
evidence outside the matrix and we can write the Raman tensor

considering only the 2 � 2 block in the xy plane as:53,54

RAg ¼
aeifa deifd

deifd beifb

 !
¼ aeifa

1 ðd=aÞeiðfd�faÞ

ðd=aÞeiðfd�faÞ ðb=aÞeiðfb�faÞ

 !
;

(15)

where a, b, d 4 0 are the absolute values and fa, fb, fd are the
phases of the complex tensor elements. When the matrix above
is introduced in eqn (3), the phase term eifa disappears when
the square modulus of the expression is taken. Therefore, we
cannot obtain the phases fa, fb, and fd of the tensor elements
in an angle-resolved polarized Raman experiment, but only the
phase differences (fb � fa) and (fd � fa).19,20 Moreover, since
we are not measuring the absolute values of the Raman
intensity, which would require the control of different para-
meters in the experimental setup, we cannot obtain the abso-
lute values of a, b and d, but only the ratios b/a and d/a.

The polarized Raman intensities for the Ag modes in triclinic
systems in the parallel (I8) and crossed (I>) configurations,
obtained by introducing the tensor in eqn (15) into eqn (3), are
given by:53,54

IkðyÞ / a2 cos4 yþ b2 sin4 yþ d sin 2yð Þ2þ sin 2y
1

2
ab cosfab

�

� sin 2y� 2ad cosfad cos
2 y� 2bd cosðfad � fabÞ sin2 yÞ

(16a)

Fig. 6 Typical angle-resolved Raman map of a monoclinic 1T0-MoTe2. Raman map in the (a) parallel (8) and (b) crossed (>) polarization configurations.
(c) Angular dependence of the intensities of the 1T0-MoTe2 peaks shown in (a) and (b). The angle-resolved Raman map was constructed using two
excitation energies: 1.96 eV (below 100 cm�1) and 2.33 nm (above 100 cm�1). Adapted with permission from ref. 50.
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I?ðyÞ / a2 þ b2 � 2ab cosfab

� 
 1

2
sin 2y

� �2

þ d cos 2yð Þ2

� 1

2
sin 4yðbd cosðfad � fabÞ � ad cosfadÞ

(16b)

where y is the angle between the polarization vector êi and the
x-axis, and fab = (fb � fa) and fad = (fd � fa) are the phase
differences of the elements of the tensor.19

Another interesting difference between orthorhombic and
triclinic systems is related to the phases of Raman tensor
elements, which are necessary to explain the experimental
angular dependence of I8 and I> of the Ag symmetry
modes.19 As shown in section 2.1, for orthorhombic crystals,
we need to consider the phase difference fac = (fc � fa)
between the diagonal elements of the tensor. However, for
triclinic systems, we need to consider not only the phase
difference fab = (fb � fa) between the diagonal elements but
also the phase difference between the non-diagonal and one
diagonal element, fad = (fd � fa).

Fig. 8 shows examples of the angular dependence of I8(y)
and I>(y) for six different Ag Raman modes of the monolayer
ReSe2. The dots represent the experimental data, and the curves
correspond to the best fitting by eqn (7) considering real and
complex tensor elements. The dashed blue curves represent the

best fit considering only real tensor elements, where the phase
differences fab and fad are 01 or 1801. The solid pink curves in
Fig. 8 represent the best fit of I8 and I> when the tensor
elements are complex numbers and the phase differences fab

and fad are included.
We can observe in Fig. 8 that the angular dependence

of I8 and I> of modes A7
g, A13

g and A15
g can be fitted when

the elements of the Raman tensors are real numbers,
since the phase differences are 01 or 1801. However, for
modes A4

g, A5
g and A9

g, the disagreement between the experi-
mental data and the fitting considering real numbers
is evident, especially in the case of the crossed (I>) polar-
ization results. The predicted minima of I> considering real
elements are zero, but the experimental results show that
the minima of I> are not zero. The effect of the phase of
the tensor element also appears in the angular dependence
of the parallel polarized intensity I8. We conclude that
the angular dependence of 2D triclinic crystals can only be
explained if we consider that the tensor elements are
complex numbers and if we introduce the phase differences
fab and fad in eqn (16a) and (16b) to fit the angle-resolved
polarized intensities.

Another important aspect of the Raman spectra in triclinic
systems is the fact that they are different in the two different
faces of the 2D sample. In fact, the atomic structure of ReX2

(X = S or Se) crystals lacks a rotation by p around any axis
parallel to the layer plane, which results in two distinct

Fig. 7 Characteristic Raman spectrum of the triclinic ReSe2; (a) Raman spectrum of a monolayer ReSe2 showing the 18 Ag modes predicted by group
theory. Typical angle-resolved Raman map of ReSe2 in the (b) parallel (8) and (c) crossed (>) configurations. The spectra and mapping were collected
with a 2.33 eV laser energy. Adapted with permission from ref. 19.

Perspective PCCP

Pu
bl

is
he

d 
on

 1
6 

O
ct

ob
er

 2
02

1.
 D

ow
nl

oa
de

d 
on

 1
1/

1/
20

25
 5

:2
8:

30
 A

M
. 

View Article Online

https://doi.org/10.1039/d1cp03626b


This journal is © the Owner Societies 2021 Phys. Chem. Chem. Phys., 2021, 23, 27103–27123 |  27115

Fig. 8 Typical Raman polar plots of a monolayer triclinic ReSe2. Angular dependence of the intensities of 6 Ag modes in the parallel (8)
and crossed (>) configurations for an exfoliated monolayer ReSe2 collected using an excitation energy of 2.33 eV. The corres-
ponding tensor element ratios and phase differences extracted from the fitting process are also shown. Adapted with permission from
ref. 19.
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vertical orientations, ‘‘up’’ or ‘‘down’’.51,70,91 Hart et al.
showed that it is possible to experimentally obtain crystals
in these orientations in a controlled manner through
mechanical exfoliation.91 They also have shown that for a
rotation by p around the y-axis changes the sign of the xy and
yz elements of the Raman tensors. Choi et al. performed
angle-polarized Raman measurements on ReS2 and ReSe2

exfoliated crystals placed on a transparent quartz substrate
in both ‘‘up’’ and ‘‘down’’ orientations,51 by turning the
substrate upside down as schematized in Fig. 9a and b
and shown in Fig. 9c and d. The ReS2 samples were excited
by a 2.33 eV laser line. Fig. 9c and d show that the upside turn
of the substrate is a p rotation around the 01 direction
pointed in the optical images. Their angle-resolved polarized
results in the ‘‘up’’ and ‘‘down’’ orientation are shown in
Fig. 9e and f, respectively. As one can observe, for phonon
modes of ReS2 labelled as mode 3 and mode 551 the polar
plots in Fig. 9e are rotations of the polar plots in Fig. 9f
around the vertical direction. The same trend was observed
for ReSe2 samples.51

3 Resonant Raman effects in
low-symmetry 2D materials
3.1 Black phosphorus

Further investigation about the anisotropic Raman response of
low-symmetry 2D materials has been provided by the combi-
nation of polarized Raman with resonant Raman spectro-
scopies. The latter has shown to be a powerful tool to probe
the electronic structure, excitons and electron–phonon inter-
actions in 2D materials, such as twisted-bilayer graphene,39

MoTe2,40 and MoS2,37,38 among others.34,35,62,92–95

In few-layered black phosphorus, Mao et al. observed
symmetry-dependent electron–phonon couplings in the experi-
mental Raman excitation profiles of the different modes, which
were supported by density functional theory calculations.46

It was shown in this work that, despite the fact that both Ag

modes in black phosphorus exhibit in-plane and out-of-plane
components, the ‘‘in-plane’’ vibrational A2

g mode exhibits a
stronger resonance in the visible range than the ‘‘out-of-plane’’
A1

g mode, as shown in Fig. 10a and b. For excitation energies in the
visible range, the A2

g mode has a strong resonance behavior in the
armchair and zigzag directions (see Fig. 10a and b), whereas the
A1

g mode exhibits a weak resonance in both directions, except
when excited at the 2.70 eV and with polarization in the zigzag
direction (see Fig. 10a and b).46 In addition, it was observed that,
for excitation energies in the 2.60–2.73 eV range, the Raman
response of the A1

g mode is more intense in the zigzag than in
the armchair direction as shown in Fig. 10c–f, despite the fact that
the absorption is higher in the armchair direction in this energy
range.46 This result is a strong indication that the electron–
phonon coupling can be more relevant for the enhancement of
Raman response than the intrinsic resonance effect in this range
of excitation energies. Moreover, the difference in the resonance
behavior for these two Ag modes increases in the UV region, where
the intensity of A1

g becomes very weak.
These results can be understood considering the symmetry

dependence of the exciton–phonon coupling, as observed in
semiconducting 2D MoS2

38 and MoSe2.41 In the black phos-
phorus case, although both Ag modes share the same irreducible
representation, the atoms vibrate along the armchair direction in
the A2

g mode, which therefore couples more efficiently with the
optical transition for electric dipole along the same direction (see
Fig. 10c). On the other hand, the A1

g mode involves the vibration of
atoms mainly in the out-of-plane direction and, therefore, does
not exhibit such efficient coupling (see Fig. 10d). Similarly, the
weak resonance for both Ag modes in the zigzag direction can be
attributed to the fact that few-layered BP is almost transparent for
visible light polarized in this direction.46 It is worth noting that
few-layer black phosphorus absorbs UV light in the zigzag direc-
tion and, therefore, the stronger signal observed for the A2

g mode
suggests that the in-plane mode also couples more efficiently with
in-plane electric dipole transition.

3.2 ReS2 and ReSe2 triclinic crystals

Fig. 8 shows that the orientation and shape of the polar plots of
the angular-resolved dependence of the polarized Raman

Fig. 9 The flipping-like a coin behavior in triclinic 2D materials. Scheme
of the laser beam to probe the vertical orientation in triclinic ReX2 (X = S or
Se) in the (a) ‘‘up’’ and (b) ‘‘down’’ sample’s orientation. Optical images of
the monolayer ReS2 in the (c) ‘‘up’’ and (d) ‘‘down’’ orientation show in
(a and b). Angle-polarized Raman response of modes 3 and 5 of monolayer
ReS2 in the (e) ‘‘up’’ and (f) ‘‘down’’ orientations. Adapted with permission
from ref. 51.
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intensities in monolayer ReSe2 are distinct for each one of the
18 Raman modes.19,51 This is a consequence to the fact that all
elements of the Raman tensor are non-null and, therefore, the
presence of diagonal and non-diagonal terms makes the orien-
tation of the tensors independent on the crystalline axes. In this
section, we show that the orientation and shape of the polar
plots for the Raman modes of the ReX2 (X = S or Se) also depend
on the excitation laser energy and on the number of layers of
the 2D materials.

Choi et al. performed a systematic angle-resolved polarized
Raman study of ReS2 and ReSe2 samples with one, two and three
layers (1L, 2L and 3L) recorded with different excitation laser
energies.51 Fig. 11 shows the Raman intensity polar plots of the first
five Ag modes in the monolayer (1L), bilayer (2L) and trilayer (3L)
ReSe2, where the red, green and blue dots correspond to the
intensities recorded, respectively, with the 1.96, 2.33 and 2.81 eV
excitation laser energies in the ‘‘up’’ orientation of the sample.51

Note in the first row of Fig. 11 that both the orientation and shape of
the polar plots of the 1L ReSe2 are distinct for each excitation energy.
This result shows that the Raman tensor elements and the ratio
between the non-diagonal to diagonal terms in triclinic systems
depend on the excitation energy used to perform the angle-resolved
experiments and also on the number of layers of the sample.

In a recent work, Resende et al. reported an angle-resolved
polarized Raman study in 1L and bulk ReSe2 for the excitation
energies of 1.92 eV and 2.34 eV, in order to investigate the
effects of dimensionality and excitation energy on the Raman
tensors of ReSe2.20 The Raman tensors for all 18 Ag modes were
obtained considering a simultaneous fitting of the angular

dependence in the parallel (I8) and cross (I>) polarized intensities.
It was observed that, as expected for a triclinic system excited near
resonance conditions, the tensor elements are in general complex
numbers and the angular dependence of the polarized Raman
intensities is only fitted by considering phase differences between
tensor elements.20 Fig. 12a–d show, respectively, the Raman tensor
element ratio (b/a and d/a) and the phase differences for the 1.92 eV
and 2.34 eV laser energies for all 18 Ag modes of a monolayer ReSe2.
We can observe that the phase differences of the 18 Ag modes in 1L
ReSe2 vary between 0 and 1801, which in turn are different for the
1.92 eV and 2.34 eV excitation energies (see Fig. 12). In most cases,
both the tensor elements and phases vary with the change of the
excitation energy. For the tensor elements, the b/a ratio for the
2.34 eV laser energy is less scattered than the data for the 1.92 eV,
and the c/a ratio is less scattered for both laser energies.
Similar behavior can be observed for the phase differences. It
was demonstrated in this work that the complex Raman tensor
elements contain the contribution of the scattering process of a
unique ReSe2 layer and other contribution related to the interfer-
ence of the scattered light coming from the different layers of the
material.20

McCreary et al. investigated the resonant Raman behavior of
rhenium disulfide (ReS2) for different number of layers (1L, 2L,
4L and bulk) using four excitation energies (1.58, 1.96, 2.41 and
2.54 eV).56 It was shown that most of the modes in ReS2 exhibit
a maximum intensity peak when excited with the 1.58 eV
energy, which is close to the excitonic transition for 2L, 4L
and bulk, but a low-intensity response in the Raman spectrum
of 1L ReS2 collected at the 1.58 eV energy.56 The peaks that

Fig. 10 Resonant Raman response of an orthorhombic black phosphorus. Resonant Raman spectra of a 7.7 nm BP flake (B14 layers) for the excitation
energies of 1.92 eV, 2.70 eV and 3.06 eV along the (a) armchair and (b) zigzag directions. Resonant angle-resolved Raman results for different excitation
energies of the (c) A2

g and (d) A1
g modes for a B10 nm BP flake. (e) Experimental and (f) calculated Raman excitation profiles of A1

g (red curves) and A2
g (blue

curves) along the armchair (AC) and zigzag (ZZ) directions. Adapted with permission from ref. 46.
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exhibited the highest intensity are those associated with the
S-atoms vibrations (e.g. A2

g, A3
g, A12

g , A15
g , A16

g and A18
g modes). A

large intensity enhancement was observed for the modes
related to the out-of-plane vibration of the Re atoms for the
1.58 eV excitation energy. However, the modes corresponding

to the in-plane vibrations of the Re atoms (e.g. A6
g and A7

g modes)
show a significant enhancement only when excited at 1.96 eV.56

The A1
g and A8

g modes, which are also related to Re in-plane
vibrations, also present considerable intensity change but only
for the 2L and 4L ReS2 samples.56

Fig. 12 Raman tensor elements and phase differences of a monolayer ReSe2. (a and b) Ratio values of the Raman tensor elements (in a logarithmic scale)
and (c and d) the phase differences for all 18 Ag of a monolayer ReSe2 for 1.92 eV and 2.34 eV excitation laser energies. (e) Calculated electron–phonon
couplings for A9

g and A10
g between the lowest conduction band electronic states at the M point and for A4

g, A5
g, A9

g, and A10
g between the third lowest

conduction band electronic stated at the G point. The color-bar scale is in units of meV. Images (a–d) were adapted with permission from ref. 20 and
image (e) was adapted with permission from ref. 19.

Fig. 11 Resonant Raman response of a triclinic ReSe2. Resonant angle-resolved Raman dependence of some modes of a few-layered ReSe2 in the ‘‘up’’
orientation for excitation energies of 1.96, 2.33, and 2.81 eV, respectively. Adapted with permission from ref. 51.
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3.3 Origin of the complex Raman tensors and
electron–phonon coupling

In this section, we will discuss the physical origin of the Raman
tensor elements and the phase differences between tensor
elements observed in low-symmetry crystals. We show that
the dependence of the tensor elements on the laser excitation
energy and on the number of layers in 2D materials is a
consequence of the resonant Raman effect that occurs when
the photons of the Raman process (absorption or emission) are
in resonance with the optical transitions of the material.

According to the expression for the Raman tensor elemens
Rm

ij shown in eqn (9), the modulus of the tensor elements
depends on the three matrix elements in the numerator and
on the two resonant terms in the denominator of the expres-
sion. On the other hand, the phase fm

ij depends only on the terms
in the denominator of eqn (9). Eqn (10) corresponds to the
simplest expression for the phase fm

ij, where we ignore the sums
in eqn (9), and considers only two electronic energy levels in the
valence and conduction bands. The strong dependence of the
phase fm

ij on the difference (EL � DE) observed in Fig. 2b explains
why the modulus and phase differences of the Raman tensor
elements observed in low-symmetry 2D materials depend on
the laser excitation energy. It also explains why the
Raman tensor elements are different in single-layered, few
layered and bulk 2D materials, since the electronic band structure
and excitonic optical transitions depend on the number of
layers and are distinct in the single-layer, few-layers and bulk
regimes.

The observed results that each Raman mode exhibits a
distinct angle-resolved polarized Raman spectra and a specific
Raman tensor in low-symmetry 2D materials cannot be explained
by the weak dependence of fm

ij on the phonon frequency Eph

shown in Fig. 2b. In fact, the distinct and particular behavior of
each Raman mode is due to the dependence of the electron–
phonon matrix element hcc0(k)|Hel–

m
ph|cc(k)i on the wavevector k

of the electronic state. Despite the fact that only q B 0 phonons
are involved in first-order Raman scattering, the vertical optical
transitions occur for all electronic wavevectors k within the
Brillouin zone. Fig. 12e shows the maps of the electron–phonon
coupling as a function of the wavevector k over the entire Brillouin
zone for six different normal modes of ReSe2.19 We can clearly
observe in Fig. 12e that the maxima of the electron–phonon
coupling for each Raman mode occur at different wavevectors k
in the BZ. Therefore, the dependence of the electron–phonon
matrix elements on k explains the distinct values of the modulus
and phases of the Raman tensor elements for each Raman mode.

In summary, we can observe from eqn (9) that the modulus
of the Raman tensor elements depends on the three matrix
elements in the numerator of the expression, but the phases
depend only on the terms in the denominator of eqn (10). For
the two optical transitions, we need to take into account the
electric fields E of the incident and scattered radiation polar-
ized along the directions êi and êj, respectively, and the matrix
elements of the electric dipole operator d between states in the
valence and conduction bands. The sum in eqn (9) is performed

over all wavevectors k within the first Brillouin zone, and the
contribution of a specific process with wavevector k for the
Raman intensity is directly proportional to the three matrix
elements in the numerator of eqn (9) and inversely proportional
to the difference [Ei � Ecv(k)] that appears in the denominator
of eqn (9). We thus need to consider the dependence of all
terms of eqn (9) on the wavevector k to explain the specific
angular dependence for each Raman mode.

4 Concluding remarks

In the emerging field of 2D materials, new systems with
different chemical elements and atomic structures are being
extensively produced and studied. Raman spectroscopy is a
fundamental experimental tool to investigate 2D materials that
has been widespread in graphene and spanned to other 2D
compounds such as the transition metal dichalcogenides.
Raman spectra provide information about different physical
properties of the sample, such as disorder, strain, presence of
charges, number of layers, atomic structure of edges, and
stacking arrangement, among others. Moreover, the possibility
of using multiple excitation laser energies allows investigating
the physics of excitons predominant in 2D layered materials
and the electron–phonon interactions. In high symmetry 2D
materials, such as graphene and MoS2, the intensity of the
Raman peaks does not depend on the direction of the incident
light polarization with respect to the crystallographic axes.
However, in low-symmetry 2D systems belonging to the ortho-
rhombic, monoclinic and triclinic crystal families, the intensity
of each Raman mode depends on the polarization of the
incident light with respect to the crystallographic axes of the
material. The anisotropy on the Raman response in low-
symmetry materials is described by the Raman tensor, which
is specific for each Raman-active mode.

In this perspective review, we started discussing the tensor-
ial nature of the Raman response in crystals and the angle-
resolved polarized Raman experiments, where one can vary the
angle between the light polarization with respect to the crystal-
line axes. We have shown that it is of utmost importance to use
a polarizer/analyzer to control the polarization of the scattered
light to correctly determine the values of the Raman tensor
elements from the analysis of the angle-resolved polarized
intensities. In the most common configurations for the polari-
zed Raman experiments, the polarization of the incident light
can be parallel (8) or perpendicular (>) to the polarization of
the scattered light. The tensor elements are obtained by fitting
the angular dependence of the parallel (I8) and crossed (I>)
Raman intensities with the same set of tensor elements for
each mode. We have shown that the directions of the maxima
and minima of I8 for orthorhombic systems are along the
crystalline axes and the maxima of I> make an angle of 451
with respect to the crystalline axes. In monoclinic 1T0-MoTe2,
the angle-resolved experiments are similar to the orthorhombic
case since the 2-fold symmetry axis is in the layer plane.
For triclinic systems, the maxima in the angular dependence
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of I8 and I> are at general orientations and distinct for each
Raman mode. This behavior is a consequence of the fact that all
elements of the Raman tensor in triclinic systems are different
from zero. The co-existence of diagonal and non-diagonal
elements in the Raman tensors makes the directions of the
maxima of I8 and I> independent on the directions of the
crystalline axes.

Most of the low-symmetry 2D materials studied so far, such
as black-phosphorus and MoTe2, are semiconducting and the
energies of the photons normally used in Raman spectroscopy
are above their energy band gaps. Therefore, their Raman
intensities are enhanced by the resonances of the photons with
higher energy electronic (or excitonic) transitions. In this
case, the Raman tensor elements are complex numbers, with
a modulus and a phase. Information about the phases of the
Raman tensor elements is lost in higher symmetry materials
but is preserved in the case of low-symmetry materials. However,
we can only obtain values of the phase differences between the
elements of the Raman tensor from the analysis of the angle-
resolved experiments. It was shown that the unusual angular
dependence of the polarized spectra of black-phosphorus can be
nicely explained by considering the phase difference between the
two diagonal elements of the tensor associated with the totally
symmetric A2

g modes. In the case of triclinic and semiconducting
materials such and ReS2 and ReSe2, it was shown that the complex
nature of the tensor elements is observed for the majority of the
modes, and phase differences between diagonal elements and
between diagonal and non-diagonal elements are needed to fit the
experimental angular dependence of I8 and I>.

We have analyzed the results for the Raman tensors in low
symmetry 2D materials within the framework of the quantum
model for the Raman process, in which we consider explicitly
not only the two optical transitions associated with the incident
and scattered photons but also the matrix element of the
electron–phonon process. For the determination of the Raman
tensor, we need to sum the contribution over all k points in the
Brillouin zone. Due to the resonance effect, the contribution of
each k-vector for the Raman tensor element will be inversely
proportional to the difference EL � DE(k) between the laser
energy and the bandgap at this k point. Moreover, we also need
to consider the contribution of the electron–phonon matrix
element and its dependence on the wavevector k for the Raman
tensor. The fact that the Raman tensor is different for each
mode is a clear evidence that the dependence of the electron–
phonon matrix elements on k plays a fundamental role to
describe the angle-resolved polarized Raman spectra in low-
symmetry 2D materials.

Finally, the possibility of performing measurements in
samples of low-symmetry 2D materials with a different number
of layers (1L, 2L, 3L and up to bulk) will allow the distinction of
the contributions for the Raman tensor from a single atomic
layer and from the light scattered by different layers of a multi-
layered sample. Although there are some recent studies on the
resonant Raman effect in low-symmetry 2D materials, most of
the reports have used only a few laser excitation energies.
A detailed multiple energy excitation Raman study, where we

can tune the excitation laser energy across the excitonic transi-
tions, will be needed to unveil the electron–phonon or exciton–
phonon coupling mechanism in these materials. We stress that
there is still a lot to be explored in these systems and the
investigation of the polarized and resonant properties of the
Raman spectra in low-symmetry 2D materials is still only at
the beginning stage. For instance, some reports have recently
demonstrated the emergence of anisotropic properties in
twisted samples of graphene and semiconducting TMDs,96–101

due to the mismatch between the layers that breaks the axial
symmetry. Angle-resolved polarized Raman spectroscopy may
provide a new route to study symmetry lowering in twisted 2D
structures. Also, the quantification of defects in 2D materials
needs attention as it plays a major role in the physical proper-
ties of the material. Yu et al.52 reported a study of defects in
anisotropic ReS2 created by argon irradiation and observed the
correlation of the defect density and anisotropy. Future studies
of defective anisotropic 2D materials may provide new and
interesting results. We have only scratched a piece of the
quantum formalism to investigate the modulus and phase of
the Raman tensor elements and an integration of the Raman
tensor expression over all valence and conduction bands and
over all wavevectors k in the Brillouin zone will be needed to
fully describe the experimental results. This review demonstrates
the importance of angle-resolved polarized Raman spectroscopy
to study the fundamental physics of low-symmetry materials,
highlighting its uniqueness in the 2D materials field.
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