Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

The performance of thermoelectric (TE) materials is strongly influenced by multi-scale defects. Some defects can improve the TE performance but some are unfavorable. Therefore, the multi-scale defects need to be integrated rationally to enhance the TE properties. Here, the defects including atomic-scale point defects, high-density grain boundaries and nano-precipitates were integrated into CuFeS2, an n-type and Earth-abundant TE material. Primitively, a Cd dopant with high scattering factor was introduced to form Image ID:c9nr04693c-t1.gif point defects in Cu1−xCdxFeS2 (x = 0–0.1) according to the calculated scattering parameters. Furthermore, the processes of quenching, annealing, high-energy ball milling (QAH) and sintering were carried out to integrate the multi-scale defects into Cu1−xCdxFeS2. The results suggested that Image ID:c9nr04693c-t2.gif point defects and Image ID:c9nr04693c-t3.gif antisite defects were achieved and the unfavorable Cd′Fe defects were suppressed effectively, leading to a higher electrical conductivity. Moreover, the CdS nano-precipitates played a vital role in carrier filtering to increase the Seebeck coefficient. Meanwhile, the high-density grain boundaries suppressed the lattice thermal conductivity. As a result, a peak ZT value of 0.39 at 723 K was obtained in Cu0.92Cd0.08FeS2, which is the highest value reported so far in the CuFeS2 family.

Graphical abstract: Integration of multi-scale defects for optimizing thermoelectric properties of n-type Cu1−xCdxFeS2 (x = 0–0.1)

Page: ^ Top