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Bioinspired design of redox-active ligands for
multielectron catalysis: effects of positioning
pyrazine reservoirs on cobalt for electro- and
photocatalytic generation of hydrogen from watery

Jonah W. Jurss,®“® Rony S. Khnayzer,” Julien A. Panetier,® Karim A. El Roz,f
Eva M. Nichols,®® Martin Head-Gordon,*?¢ Jeffrey R. Long,*®® Felix N. Castellano*'
and Christopher J. Chang*@°"

Mononuclear metalloenzymes in nature can function in cooperation with precisely positioned redox-active
organic cofactors in order to carry out multielectron catalysis. Inspired by the finely tuned redox management
of these bioinorganic systems, we present the design, synthesis, and experimental and theoretical
characterization of a homologous series of cobalt complexes bearing redox-active pyrazines. These donor
moieties are locked into key positions within a pentadentate ligand scaffold in order to evaluate the effects of
positioning redox non-innocent ligands on hydrogen evolution catalysis. Both metal- and ligand-centered
redox features are observed in organic as well as aqueous solutions over a range of pH values, and comparison
with analogs bearing redox-inactive zinc(i) allows for assignments of ligand-based redox events. Varying the
geometric placement of redox non-innocent pyrazine donors on isostructural pentadentate ligand platforms
results in marked effects on observed cobalt-catalyzed proton reduction activity. Electrocatalytic hydrogen
evolution from weak acids in acetonitrile solution, under diffusion-limited conditions, reveals that the pyrazine
donor of axial isomer 1-Co behaves as an unproductive electron sink, resulting in high overpotentials for proton
reduction, whereas the equatorial pyrazine isomer complex 2-Co is significantly more active for hydrogen
generation at lower voltages. Addition of a second equatorial pyrazine in complex 3-Co further minimizes
overpotentials required for catalysis. The equatorial derivative 2-Co is also superior to its axial 1-Co congener
for electrocatalytic and visible-light photocatalytic hydrogen generation in biologically relevant, neutral pH
aqueous media. Density functional theory calculations (B3LYP-D?2) indicate that the first reduction of catalyst

isomers 1-Co, 2-Co, and 3-Co is largely metal-centered while the second reduction occurs at pyrazine. Taken
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Accepted 9th June 2015 together, the data establish that proper positioning of non-innocent pyrazine ligands on a single cobalt center is

. indeed critical for promoting efficient hydrogen catalysis in aqueous media, akin to optimally positioned redox-
DOI: 10.1039/c55c01414) active cofactors in metalloenzymes. In a broader sense, these findings highlight the significance of electronic

www.rsc.org/chemicalscience structure considerations in the design of effective electron—hole reservoirs for multielectron transformations.

conversion chemistry.* In this context, hydrogen is an attractive
energy-dense, carbon-free fuel that is accessible by the two-
electron reduction of water and thus a target product of many
schemes for artificial photosynthesis.> Numerous molecular

Introduction

Rising global energy demands and climate change provide
motivation to develop new approaches for solar-to-fuel
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catalysts for hydrogen evolution have been described, including
ones that rely on earth-abundant metals, but the vast majority
of these systems require organic acids, solvents, and/or other
additives.* In contrast, hydrogen-evolving catalysts that can
reduce protons directly from water, particularly at
environmentally-benign neutral pH values to avoid organic
additives and corrosive conditions, remain rare and examples
based on Co,*?* Ni,?**° Fe,** and Mo0**?*® have been reported.
In previous work, we have leveraged the coordination chemistry
of polypyridine ligand platforms to develop molecular
hydrogen-evolving catalysts that can operate under biologically-
compatible conditions (pH 7 buffered water and
seawater),'"®'”?*% that structurally and functionally mimic
active edge-sites in extended materials such as MoS,,** and
which can be driven by photoredox catalysis with molecular
[Ru(bpy)s]** or semiconducting GaP
chromophores.*>*7*°

In search of new design strategies for the two-electron
reduction of water to hydrogen, we were attracted to the inte-
gral role and ubiquity of redox-active ligands in numerous
biological systems. Metalloenzymes routinely perform multi-
electron reactions near thermodynamic potentials under phys-
iological conditions by accumulating multiple redox
equivalents over proximal sites involving ligated or adjacent
redox-active cofactors.>’** Such redox-active moieties have
finely tuned potentials and are optimally positioned within
metalloenzyme active sites to promote synergistic redox chem-
istry. Of particular interest are systems comprising a single
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metal active site that functions in concert with redox-active
organic pendants to multielectron  trans-
formations.*”** Prototypical enzymes of this class (Fig. 1A)
include galactose oxidase (GO) which catalyzes the two-electron
conversion of primary alcohols to aldehydes via cooperative
oxidation by a Cu(m) center and coordinated phenoxyl
radical,®®* copper amine oxidase (CAO) which utilizes an
o-quinone moiety (TPQ) to catalyze two half reactions in route to
transforming primary amines to aldehydes,**** and mono-
nuclear iron hydrogenase, comprising a tautomeric
2-hydroxypyridine/pyridone ligand and a closely-spaced, redox-
active pterin cofactor that together enable efficient hydrogen
processing.***

More specifically, the phenoxyl radical of GO is localized on
an unusual cysteine-modified tyrosine residue whose in-plane
orientation, combined with its axial/equatorial coordination
to copper allows antiferromagnetic coupling with the metal,
promotes resonance stabilization of the radical.*® In CAO, the
versatility and optimal activity of this enzyme emerges from the
carefully regulated position and orientation of the TPQ ring for
controlled interaction with the metal.* Similarly, the activity of
iron hydrogenase is critically linked to the interplay of the redox
non-innocent pyridyl unit and pterin cofactor at the interface of
a labile iron coordination site.*** Indeed, precise arrangement
of first- and second-sphere redox components is required in
enzymatic systems and is most clearly observed in the dimin-
ished activity of minimally-modified active sites by protein

execute

o Tyraee o /N
HH o N/kNH
o \ /N.,,, | .CO H 2
Fe\
™PQ ~7| ~co
CVS176\—C
\
(0]

N
- N/T \N/'\
N
»
N

axial isomer, 1-Co

\[(aX-PY4PZM62)C°(OH2)]2+

equatorial isomer, 2-Co
[(eq-PY4PZMe,)Co(OH,)?*

3-Co
[(PY3PZ2Me,)Co(OH,)I2* /

Fig. 1

(A) Mononuclear metalloenzyme active sites with optimally positioned redox non-innocent organic cofactors. (B) A homologous series of

molecular cobalt catalysts for water reduction to H, containing pyrazine donors in a PY5Me,-type framework.
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engineering®™*4 and of less optimized synthetic model
systems. 3414

Intrigued by the exquisite management of redox invento-
ries in these metalloenzymes, we sought to prepare synthetic
catalysts bearing redox-active moieties to catalytically
produce hydrogen from water and to further understand the
electronic structure-function relationships of these redox
reservoirs in catalysis. Specifically, we targeted the incorpo-
ration of redox-active donors at key positions within a
structurally well-defined cobalt pentapyridine motif with
demonstrated hydrogen production activity and focused on
pyrazine as an isostructural pyridine analog. Because the gas
phase electron affinity of pyrazine is ca. 0.6 eV more positive
than pyridine,*>*® it can be reduced at modest potentials*’
and could serve as a redox-active component to facilitate the
two-electron reduction of protons to hydrogen. Moreover, we
reasoned that the lower lying 7* orbitals of pyrazine relative
to pyridine would enhance metal-to-ligand backbonding
from the cobalt center and give a more electron-deficient
metal with more positive reduction potentials.***® Addition-
ally, we note that seminal observations of redox non-innocent
ligand behavior in metal dithiolene complexes'**® have
spawned a rich vein of inorganic reactivity studies in the area
of redox-active ligands.>*>*

In this report, we present the synthesis and characterization
of a homologous series of cobalt complexes supported by pen-
tadentate ligands where redox-active pyrazine functionalities
are systematically incorporated at axial and equatorial positions
(Fig. 1B). These bioinspired systems are capable of electro- and
photocatalytic production of hydrogen from water at neutral
pH. Catalyst isomers display markedly different reactivities
depending on the relative position of the non-innocent pyrazine
moiety, with a ca. 200 mV improvement in overpotential
compared to pyridine analogs that lack pendant redox reser-
voirs. Density functional calculations have been performed to
investigate the cobalt complexes and their one- and two-
electron reduced species. This further illustrates the impor-
tance of electronic structure considerations in the placement of
redox non-innocent ligands relative to catalytic metal sites for
multielectron chemistry.

Experimental section
Materials and methods

Unless otherwise noted, all synthetic manipulations were
carried out under a nitrogen atmosphere in a Vacuum Atmo-
spheres glovebox or using Schlenk techniques. Tetrahydro-
furan, acetonitrile, 1,2-dimethoxyethane, and dichloromethane
were dried via Vacuum Atmospheres solvent purification
system. The compounds 2-ethylpyridine, 2-fluoropyridine, 2,6-
difluoropyridine, 2-ethylpyrazine, 2-chloropyrazine, 2,6-
dichloropyrazine were purchased from Oakwood Chemicals.
Anhydrous zinc(u) trifluoromethanesulfonate (Zn(OTf),) and
anhydrous cobalt chloride (CoCl,) were purchased from Strem
Chemicals. Trimethylsilyl trifluoromethanesulfonate (TMS tri-
flate), tetrabutylammonium hexafluorophosphate (Bu,NPFy),
tris(2,2’-bipyridyl)ruthenium(u) chloride hexahydrate
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(Ru(bpy)sCl,-6H,0), n-butyllithium (2.5 M solution), lithium
diisopropylamide (1.8 or 2.0 M solution), anhydrous
1,4-dioxane, and r-ascorbic acid were purchased from Sigma
Aldrich. Glassy carbon rods (type 2) were purchased from Alfa
Aesar for electrochemical studies. Water was purified with the
Millipore Milli-Q UF Plus system. All other chemical reagents
were purchased from commercial vendors and used without
further purification. 'H and "C NMR spectra were obtained
using Bruker spectrometers operating at 400 MHz (*H) or 100
MHz (**C) as noted. Spectra were calibrated to residual pro-
tiated solvent peaks; chemical shifts are reported in ppm.
Positive mode, high-resolution electrospray ionization mass
spectra (HR-ESI-MS) were obtained from the QB3/College of
Chemistry Mass Spectrometry Facility and elemental analysis of
carbon, hydrogen, and nitrogen were obtained from the
Microanalytical Laboratory, both at the University of California,
Berkeley.

Electrochemical measurements

Electrochemistry was performed with a Bioanalytical Systems,
Inc. (BASi) Epsilon potentiostat equipped with a BASi RDE-2 cell
stand for rotating disk electrode voltammetry experiments.
Voltammetry studies employed a three-electrode cell equipped
with glassy carbon disc (3 mm dia.) working electrode, platinum
wire counter electrode, and Ag/AgCl (3.0 M NaCl) aqueous
reference or silver wire quasi-reference electrode for
nonaqueous experiments conducted in anhydrous acetonitrile
containing 0.1 M BuyNPFg electrolyte. Voltammograms in
acetonitrile were referenced using ferrocene as an internal
standard. Note: all voltammograms were cycled from the most
positive potential to the most negative potential and back.
Controlled potential electrolyses in acetonitrile with chloro-
acetic acid were conducted in a two-compartment H-cell with a
glassy carbon disc (3 mm dia.) working electrode with a Ag/AgCl
reference electrode in one side, separated from the other
compartment, containing a platinum counter electrode, by a
medium-porosity glass frit. Controlled potential electrolyses in
aqueous phosphate buffer were conducted in similar two-
compartment H-cells, but with a Hg pool working electrode
(surface area = 19.6 cm?®). Constant stirring was maintained
during controlled potential electrolysis experiments. Evolved H,
during electrolysis measurements was quantified by gas chro-
matographic analysis of headspace gases using a Varian Micro-
GC with a Molecular Sieve 5 A column (length of 40 m). Inte-
grated gas peaks were quantified with a calibration curve using
5 mL of injected methane as an internal standard. Values are
plotted against the theoretical (assuming 100% Faradaic effi-
ciency) hydrogen volume based on the accumulated charge
passed during electrolysis.

X-ray crystallography

Single crystals were coated with Paratone-N hydrocarbon oil
and mounted on Kaptan loops. Temperature was maintained
at 100 K with an Oxford Cryostream 700 during data collec-
tion at the University of California, Berkeley, College of
Chemistry, X-ray Crystallography Facility. Samples were
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irradiated with Mo-Ka radiation with A = 0.71073 A using a
Bruker APEX II QUAZAR diffractometer equipped with a
Microfocus Sealed Source (Incoatec IuS) and APEX-II detector
or a Bruker SMART APEX diffractometer equipped with a
Fine-Focus Sealed Source and APEX-I detector. The Bruker
APEX2 v. 2009.1 software package was used to integrate raw
data which were corrected for Lorentz and polarization
effects.®® A semi-empirical absorption correction (SADABS)
was applied.>® Space groups were identified based on
systematic absences, E-statistics, and successive refinement
of the structures. The structures were solved using direct
methods and refined by least-squares refinement on F> and
standard difference Fourier techniques using SHELXL.®”
Thermal parameters for all non-hydrogen atoms were refined
anisotropically, and hydrogen atoms were included at ideal
positions and refined isotropically.

Computational methods

Density functional theory (DFT) calculations were performed
with the Q-Chem package®® using the B3LYP functional.®® The
def2-TZVP basis set® was employed for Co and Zn while the
def2-SVP basis set® was used for all other atoms (denoted as
BS1). Single-point calculations using diffuse functions at the
B3LYP-optimized geometries were also performed. In this case,
the def2-TZVPD basis set® was employed for Co and Zn while
the def2-SVPD basis set®* was used for all other atoms (denoted
as BS2). The X-ray structure of each cation of Co-aqua salts
reported herein was used as the initial input for calculations.
However, in order to interpret the electrochemistry data in
acetonitrile, the axial water molecule was substituted by
CH;CN. Exchange correlation integrals were evaluated with a
quadrature grid of 75 radial points and 302 Lebedev angular
points. Unrestricted SCF calculations were performed using
tight criterion and either the Direct Inversion in the Iterative
Subspace (DIIS) algorithm® or the Geometric Direct Minimi-
zation (GDM) algorithm® with an integral threshold of 10™**
Hartrees and a convergence criterion of 10~° Hartrees. Stability
analyses were performed in addition to analytical frequency
calculations on all stationary points to ensure that geometries
correspond to local minima (no negative eigenvalue). The
solvation effect was included via the SWIG C-PCM approach®
(water, ¢ = 78.355; acetonitrile, ¢ = 37.219) using the UFF radii
as well as dispersion-corrected DFT using Grimme’s D2
parameter set® at the B3LYP-optimized geometries. In addition,
all reported energies are corrected for zero-point-vibrational
energy, while free energies (quoted at 298.15 K and 1 atm) are
corrected for the harmonic oscillator approximation proposed
by Grimme where low-lying vibrational modes are treated by a
free-rotor approximation (see ESIT).®®

Photocatalysis experiments

In a 16-well combinatorial apparatus previously described,*” a
10 mL aqueous solution volume prepared in a 20 or 40 mL vial
fitted to a Teflon reactor, which is connected to a pressure
transducer (p51 pressure sensor, SSI technologies) and a mass
spectrometer (UGA-Hydrogen, SRS) through capillary tubes.

This journal is © The Royal Society of Chemistry 2015
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Solutions containing ascorbic acid/ascorbate (prepared by
titration of ascorbic acid in water with NaOH) and the photo-
sensitizer were thoroughly deaerated using 10 vacuum/argon
pressurization cycles. The molecular cobalt catalysts were
introduced under inert atmosphere and degassing was
continued; finally terminated by equilibration to atmospheric
pressure. Each solution was irradiated from the bottom using
royal-blue Philips LEDs with an optical power output at Ay =
452 4+ 10 nm of 540 mW. All experiments were performed at a
constant rotation speed of 150 rpm and constant temperature of
20 °C. The quantification of H, was performed through
normalizing the processed pressure transducer data to the
calculated moles of H, produced, which was measured inde-
pendently by gas chromatography (GC-8A, Shimadzu) and mass
spectrometry.

Synthetic precursors

Literature procedures were used for the preparation of 2,2'-
(ethane-1,1-diyl)dipyridine,*® 2,2'-(1-(6-fluoropyridin-2-yl)
ethane-1,1-diyl)dipyridine (PY3MeF),* and cobalt(i)bis(aceto-
nitrile)bis(trifluoromethanesulfonate) (Co(CH3;CN),(OTf),).”
2,6-Bis(1,1-di(pyridin-2-yl)ethyl)pyrazine (ax-PY4PZMe,), (1).
To a 2-neck round bottom flask equipped with reflux condenser
was added 2,2'-(ethane-1,1-diyl)dipyridine (6.06 g, 32.9 mmol)
in 50 mL of anhydrous tetrahydrofuran, which was then cooled
to —78 °C. A 2.0 M solution of LDA (17.3 mL, 34.5 mmol, 1.05
equivalents) was added by syringe and the solution was allowed
to warm to room temperature. Next, 2,6-dichloropyrazine
(1.23 g, 8.26 mmol, 0.25 equivalents) was added to the reaction
mixture and it was refluxed at 90 °C for 2.5 days. Upon cooling
to room temperature, residual LDA was quenched with excess
water, and organics were extracted with diethyl ether. The
extract was dried over anhydrous sodium sulfate, the solvent
was removed by rotary evaporation, and purification was ach-
ieved by alumina gel chromatography eluting with 1 : 1 ethyl
acetate : hexanes. Pure product was obtained as the last band
off the column to yield an off-white solid, 3.23 g (88%). "H NMR
(CDCl;, 400 MHz): 6 8.53 (ddd, J = 4.9, 1.9, 0.9 Hz, 4H), 8.30 (s,
2H), 7.48 (td, ] = 7.8, 1.9 Hz, 4H), 7.09 (ddd, J = 7.5, 4.8, 1.1 Hz,
4H), 6.94 (dt, J = 8.0, 1.1 Hz, 4H), 2.22 (s, 6H). ">C NMR (CDCl,,
101 MHz): 6 165.11 (s), 159.21 (s), 148.71 (s), 141.61 (s), 135.91
(s), 123.59 (s), 121.36 (s), 58.83 (s), 26.57 (s). HR-ESI-MS (M") m/z
calc. for [1 + H'], 445.2135, found, 445.2135.
2-(1-(Pyridin-2-yl)ethyl)pyrazine, (2a). To a 2-neck round
bottom flask equipped with reflux condenser was added
2-ethylpyridine (7.00 g, 7.47 mL, 65.3 mmol) in 75 mL anhy-
drous 1,2-dimethoxyethane, which was cooled to 0 °C before a
2.5 M solution of n-butyllithium (26.1 mL, 65.3 mmol, 1
equivalent) was added by syringe. The reaction mixture was
allowed to react for 15 min before 2-chloropyrazine (3.74 g,
2.92 mL, 32.7 mmol, 0.5 equivalents) was added by syringe. The
reaction was refluxed overnight at 105 °C. After allowing the
reaction to cool to room temperature, it was quenched with a
copious amount of water and extracted with diethyl ether. The
organic phase was dried over anhydrous sodium sulfate and
subsequently taken to dryness on a rotary evaporator.
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Purification was achieved by vacuum distillation where
unreacted starting material and side-product, butyl-substituted
chloropyrazine (resulting from n-butyllithium addition to the
pyrazine ring) were distilled first, followed by product at
elevated temperatures (~150 °C) to yield a pure yellow oil, 4.0 g
(66%). "H NMR (CDCl;, 300 MHz): 6 8.57 (d, /] = 1.4 Hz, 1H),
8.55-8.50 (m, 1H), 8.49 (dd, J = 2.7, 1.5 Hz, 1H), 8.38 (d,J = 2.5
Hz, 1H), 7.61 (td, J = 7.7, 1.9 Hz, 1H), 7.28 (dt, J = 7.9, 1.1 Hz,
1H), 7.12 (ddd, J = 7.5, 4.8, 1.2 Hz, 1H), 4.48 (q,J = 7.2 Hz, 1H),
1.76 (d,] = 7.2 Hz, 3H). "*C NMR (CDCl;, 101 MHz): 6 162.28 (s),
158.89 (s), 149.03 (s), 144.24 (s), 143.56 (s), 142.15 (s), 136.41 (s),
121.94 (s), 121.48 (s), 47.17 (s), 19.11 (s). HR-ESI-MS (M") m/z
calc. for [2a + H'], 186.1026, found, 186.1028.
2-(1-(6-(1,1-Di(pyridin-2-yl)ethyl)pyridin-2-yl)-1-(pyridin-2-yl)
ethyl)pyrazine, (eq-PY4PZMe,, 2). To a 2-neck round bottom
flask equipped with reflux condenser was added compound 2a
(1.34 g, 7.23 mmol) and 50 mL anhydrous 1,2-dimethoxyethane,
which was then cooled to 0 °C. Next, a 1.8 M solution of LDA
(4.2 mL, 7.6 mmol, 1.05 equivalents) was added by syringe and
the reaction was left to stir for 15 min before the addition of
PY3MeF (1.01 g, 3.6 mmol, 0.5 equivalents). The reaction
mixture was heated to reflux at 105 °C for 2 days and then cooled
to room temperature, quenched with excess water, and extrac-
ted with diethyl ether. The organic phase was dried over anhy-
drous sodium sulfate and solvent was removed via rotary
evaporation. Alumina gel chromatography was employed,
eluting with 1 : 1 ethyl acetate : hexanes with the second spot
off the column yielding pure ligand as an off-white solid, 1.433 g
(89%). 'H NMR (CDCls, 400 MHz): 6 8.51 (dt, ] = 4.7, 2.2 Hz, 3H),
8.40 (dd,J = 1.2, 1.2 Hz, 1H), 8.28 (d,J = 2.7 Hz, 1H), 8.15 (d,/ =
1.2 Hz, 1H), 7.60 (t, ] = 7.9 Hz, 1H), 7.51-7.38 (m, 3H), 7.14 (d,
J = 7.9 Hz, 1H), 7.13-7.02 (m, 4H), 6.83 (td, J = 9.3, 8.6, 6.3 Hz,
3H), 2.20 (s, 3H), 2.18 (s, 3H). "*C NMR (CDCl;, 101 MHz): §
166.08 (s), 165.17 (s), 164.85 (s), 163.16 (s), 162.01 (s), 148.78 (s),
148.58 (s), 146.72 (s), 142.62 (s), 141.28 (s), 137.06 (s), 135.97 (s),
135.71 (s), 123.88 (s), 123.65 (s), 121.43 (s), 121.14 (s), 120.46 (s),
119.65 (s), 60.15 (s), 58.81 (s), 26.92 (s), 26.33 (s). HR-ESI-MS
(M") m/z calc. for [2 + H'], 445.2135, found, 445.2132.
2,2-(Ethane-1,1-diyl)dipyrazine, (3a). To a 2-neck round
bottom flask equipped with reflux condenser was added 2-eth-
ylpyrazine (11.0 g, 11.2 mL, 102 mmol) in 75 mL of anhydrous
tetrahydrofuran, which was cooled to —78 °C, before a 1.8 M
solution of lithium diisopropylamide, LDA, (59.5 mL,
107 mmol, 1.05 equivalents) was added via cannula transfer.
The reaction mixture was allowed to stir for 15 min before it was
warmed to room temperature. Then 2-chloropyrazine (5.84 g,
4.55 mL, 51.0 mmol) was added by syringe. The reaction was
refluxed at 90 °C for 2 days. Upon cooling to room temperature,
residual LDA was quenched with a copious amount of water.
The product was extracted into diethyl ether, and dried over
anhydrous sodium sulfate. The crude product was taken to
dryness on a rotary evaporator and purified by vacuum distil-
lation. Unreacted starting material came off first followed by the
product at elevated temperatures (~150 °C) to yield a pure
yellow oil, 6.64 g (70%). 'H NMR (CDCl,, 400 MHz): 6 8.61 (d, ] =
1.5 Hz, 2H), 8.49 (dd, J = 2.6, 1.6 Hz, 2H), 8.42 (d, J = 2.5 Hz,
2H), 4.51 (q,J = 7.2 Hz, 1H), 1.79 (d, J = 7.2 Hz, 3H). **C NMR
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(CDCl;, 101 MHz): 6 157.90 (s), 144.09 (s), 143.89 (s), 142.71 (s),
45.07 (s), 19.05 (s). HR-ESI-MS (M') m/z cale. for [3a + H'),
187.0978, found, 187.0979.

2,2'{(1(6-Fluoropyridin-2-yl)ethane-1,1-diyl)dipyrazine, (PZ2PY-
MeF, 3b). To a 2-neck round bottom flask equipped with reflux
condenser was added compound 3a (4.62 g, 24.8 mmol), which
was thoroughly dried and degassed before the flask was charged
with 50 mL anhydrous 1,4-dioxane. The mixture was cooled to
0 °C and a 1.8 M solution of LDA (14.5 mL, 26.1 mmol, 1.05
equivalents) was added by syringe. The mixture was allowed to
react for 15 min before it was warmed to room temperature,
after which 2,6-difluoropyridine (0.649 g, 0.512 mL, 5.64 mmol,
4.4 equivalents) was added and the mixture was refluxed at
115 °C for 2 days. Upon cooling, residual LDA was quenched
with an excess of water, and the product was extracted into
diethyl ether. The organic phased was dried over anhydrous
sodium sulfate, taken to dryness on a rotary evaporator, and
finally purified by silica gel chromatography eluting with 99 : 1
dichloromethane : triethylamine. The purified product was
washed with water and dried to yield an off-white solid, 1.44 g
(91%). No trace of the di-substituted product was observed. 'H
NMR (CDCls, 400 MHz): 6 8.51 (dd, J = 2.5, 1.6 Hz, 2H), 8.48 (d,
J = 1.6 Hz, 2H), 8.45 (d, ] = 2.5 Hz, 2H), 7.76 (q, ] = 8.0 Hz, 1H),
7.04 (dd, J = 7.6, 2.5 Hz, 1H), 6.84 (dd, J = 8.2, 3.1 Hz, 1H), 2.31
(s, 3H). *C NMR (CDCl;, 101 MHz): 6 159.91 (s), 145.35 (s),
143.34 (s), 142.51 (s), 141.68 (s), 141.60 (s), 120.28 (s), 108.33 (s),
107.96 (s), 57.14 (s), 26.28 (s). Elem. Anal. calc. for C;5H;,FNs: C,
64.05; H, 4.30; N, 24.90. Found: C, 63.88; H, 4.39; N, 24.68.
HR-ESI-MS (M') m/z cale. for [3b + H'], 282.1150, found,
282.1151.

2,2'-(1-(6-(1,1-Di(pyridin-2-yl)ethyl)pyridin-2-yl)ethane-1,1-
diyl)dipyrazine, (PY3PZ2Me,, 3). To a 2-neck round bottom flask
equipped with reflux condenser was added 2,2'-(ethane-1,1-diyl)
dipyridine (1.31 g, 7.11 mmol) in 50 mL anhydrous 1,2-dime-
thoxyethane, which was cooled to 0 °C before addition ofa 1.8 M
LDA solution (4.15 mL, 7.47 mmol, 1.05 equivalents). After
letting the reaction stir for 15 min, compound 3b (1.00 g,
3.56 mmol) was added prior to refluxing the mixture at 105 °C
for 1.5 days. It was allowed to cool to room temperature before
residual LDA was quenched with a copious amount of water.
Organics were extracted with diethyl ether, dried over anhy-
drous sodium sulfate, and the solvent was removed by rotary
evaporation. The product was purified by alumina gel chroma-
tography eluting with 1 : 1 ethyl acetate : hexanes with the third
spot off the column being pure ligand, an off-white solid,
0.998 g (63%). *H NMR (CDCl;, 400 MHz): 6 8.52 (ddt, J = 4.3,
2.4,1.2 Hz, 2H), 8.42 (dd, ] = 2.5, 1.5 Hz, 2H), 8.34 (d,J = 2.5 Hz,
2H), 8.20 (d,J = 1.5 Hz, 2H), 7.63 (t,J = 7.9 Hz, 1H), 7.46 (td, ] =
7.8, 1.9 Hz, 2H), 7.18 (dd, J = 7.9, 0.8 Hz, 1H), 7.12 (dd, J = 8.0,
0.8 Hz, 1H), 7.08 (ddd, J = 7.6, 4.9, 1.1 Hz, 2H), 6.85 (dt, ] = 8.0,
1.1 Hz, 2H), 2.20 (s, 3H), 2.17 (s, 3H). *C NMR (CDCl;, 101
MHz): 6 165.61 (s), 165.27 (s), 161.78 (s), 160.79 (s), 148.56 (s),
145.99 (s), 142.71 (s), 141.70 (s), 137.16 (s), 135.68 (s), 123.49 (s),
121.10 (s), 120.90 (s), 119.27 (s), 60.03 (s), 57.39 (s), 26.86 (s),
25.84 (s). Elem. Anal. calc. for C,;H,3N5: C, 72.79; H, 5.20; N,
22.01. Found: C, 72.38; H, 5.33; N, 21.88. HR-ESI-MS (M) m/z
calc. for [3 + H'], 446.2088, found, 446.2088.
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General procedure for synthesis of metal complexes

To a 20 mL scintillation vial was added 0.1 g of the
desired pentadentate ligand and 1 equivalent of Zn(OTf), or
Co(CH;CN),(OTf), (anhydrous metal precursors were stored in
a glovebox). Next, 5 mL of a 9: 1 acetone : H,O mixture was
added and the reaction mixture was stirred overnight at room
temperature under an N, atmosphere. Details of the recrystal-
lization procedures and yields are provided below for each
complex.

[(ax-PY4PZMe,)Co(OH,)](OTf),, (1-Co). The reaction mixture
was taken to dryness under vacuum and the solid was
re-dissolved in a minimal amount of 19 : 1 acetone : H,O. The
recrystallization vessel was degassed with N, before it was
sealed. Golden crystals suitable for X-ray crystallography were
grown by slow diffusion of diethyl ether into the concentrated
solution to yield 0.147 g (80%). Elem. Anal. calc. for
C30H6COFgN¢O-S,: C, 43.96; H, 3.20; N, 10.25. Found: C, 44.21;
H, 2.93; N, 10.26. HR-ESI-MS (M") m/z cale. for [(ax-PY4PZMe,)
Co0™'], 251.5692, found, 251.5692; m/z calc. for [(ax-PY4PZMe,)
Co(OTf)'], 652.0909, Found, 652.0908.

[(ax-PY4PZMe,)Zn(OH,)](OTf),, (1-Zn). The reaction vial was
left open to air for slow evaporation of the solvent to yield X-ray
quality colorless crystals, 0.154 g (83%). 'H NMR (acetone-ds,
400 MHz): 6 9.49 (s, 2H), 9.45 (dd, J = 5.2, 1.6 Hz, 4H), 8.20 (dt,
J = 8.4,1.0 Hz, 4H), 8.13 (td, J = 8.0, 1.8 Hz, 4H), 7.72 (ddd, ] =
7.5, 5.3, 1.2 Hz, 4H), 2.96 (s, 6H). *C NMR (acetone-dg, minimal
amt. of D,O for solubility), 101 MHz: 158.06 (s), 151.90 (s),
150.00 (s), 144.30 (s), 141.70 (s), 125.47 (s), 124.08 (s), 48.66 (s),
23.28 (s). Elem. Anal. calc. for C3oH,6FsNO;S,Zn: C, 43.62; H,
3.17; N, 10.17. Found: C, 44.01; H, 2.87; N, 10.16. HR-ESI-MS
(M") m/z cale. for [(eq-PY4PZMe,)Zn(OTf)'], 657.0869, found,
657.0881.

[(eq-PY4PZMe,)Co(OH,)](OTf),, (2-Co). The reaction mixture
was taken to dryness under vacuum and the solid was
re-dissolved in a minimal amount of 19 : 1 acetone : H,O. The
recrystallization vessel was degassed with N, before it was
sealed. Golden crystals suitable for X-ray crystallography were
grown by slow diffusion of diethyl ether into the concentrated
solution to yield 0.120 g (65%). Elem. Anal. calc. for
C30H,6COFN,0S,: C, 43.96; H, 3.20; N, 10.25. Found: C, 43.43;
H, 3.12; N, 10.17. HR-ESI-MS (M") m/z calc. for [(eq-PY4PZMe,)
Co>"], 251.5692, found, 251.5692; m/z calc. for [(eq-PY4PZMe,)
Co(OTf)"], 652.0909, found, 652.0906.

[(eq-PY4PZMe,)Zn(OH,)](OTf),, (2-Zn). The reaction vial was
left open to air for slow evaporation of the solvent to yield X-ray
quality colorless crystals, 0.111 g (60%). "H NMR (acetone-ds,
400 MHz): 6 9.53 (ddd, J = 5.1, 2.4, 1.5 Hz, 2H), 9.48 (dd, = 1.8,
0.8 Hz, 1H), 9.47 (d, J = 1.4 Hz, 1H), 9.44 (dd, J = 2.8, 1.3 Hz,
1H), 9.01 (d, J = 2.8 Hz, 1H), 8.35 (dd, J = 5.9, 1.1 Hz, 1H), 8.33
(dd, J = 6.4, 1.2 Hz, 1H), 8.31-8.21 (m, 4H), 8.17 (qd, J = 8.4,
1.8 Hz, 3H), 7.82-7.72 (m, 3H), 3.04 (s, 3H), 2.92 (s, 3H). °C
NMR (acetone-ds, 101 MHz): 6 159.00 (s), 158.98 (s), 158.89 (s),
158.44 (s), 158.35 (s), 153.54 (s), 150.37 (s), 150.09 (s), 147.03 (s),
146.23 (s), 143.14 (s), 142.88 (s), 142.00 (s), 141.95 (s), 125.56 (s),
125.47 (s), 124.49 (s), 124.33 (s), 124.29 (s), 123.55 (s), 123.49 (s),
50.32 (s), 49.34 (s), 24.65 (s), 23.74 (s). Elem. Anal. calc. for
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Ci0H,6FsNeO,S,Zn: C, 43.62; H, 3.17; N, 10.17. Found: C, 43.47;
H, 3.22; N, 10.06. HR-ESI-MS (M") m/z calc. for [(eq-PY4APZMe,)
Zn*"], 254.0672, found, 254.0674; m/z calc. for [(eq-PY4PZMe,)
Zn(OTf)"], 657.0869, found, 657.0880.

[(PY3PZ2Me,)Co(OH,)](OTf),, (3-Co). The reaction mixture
was taken to dryness under vacuum and the solid was
re-dissolved in a minimal amount of 19 : 1 acetone : H,O. The
recrystallization vessel was degassed with N, before it was
sealed. Golden crystals suitable for X-ray crystallography were
grown by slow diffusion of diethyl ether into the concentrated
solution to yield 0.140 g (76%). Elem. Anal. calc. for
C,oH,5COF¢N,0,S,: C, 42.45; H, 3.07; N, 11.95. Found: C, 42.08;
H, 3.02; N, 11.60. HR-ESI-MS (M") m/z calc. for [(PY3PZ2Me,)
Co>"], 252.0668, found, 252.0670; m/z calc. for [(PY3PZ2Me,)
Co(OTf)"], 653.0867, found, 653.0862.

[(PY3PZ2Me,)Zn(OH,)](OTf),, (3-Zn). The reaction vial was
left open to air for slow evaporation of the solvent to yield X-ray
quality colorless crystals, 0.134 (72%). 'H NMR (acetone-ds,
400 MHz): 6 9.51 (d,J = 1.7 Hz, 1H), 9.50 (d, ] = 1.5 Hz, 2H), 9.47
(dd, J = 2.9, 1.3 Hz, 2H), 9.02 (d, J = 2.8 Hz, 2H), 8.38 (dd, ] =
11.2, 0.8 Hz, 1H), 8.36 (dd, J = 12.0, 1.2 Hz, 2H), 8.30 (d, J =
8.1 Hz, 1H), 8.28-8.22 (m, 2H), 8.17 (td, ] = 7.9, 1.8 Hz, 2H), 7.77
(ddd,J = 7.5, 5.2, 1.2 Hz, 2H), 3.17 (s, 3H), 2.91 (s, 3H). "*C NMR
(acetone-dg, 101 MHz): 6 159.07 (s), 158.77 (s), 157.76 (s), 152.84
(s), 150.09 (s), 147.23 (s), 146.27 (s), 143.18 (s), 143.15 (s), 142.09
(s), 125.63 (s), 124.34 (s), 123.84 (s), 123.69 (s), 50.29 (s), 48.28
(s), 24.64 (s), 22.84 (s). Elem. Anal. calc. for C,9H,5F¢N,0,S,Zn:
C, 42.11; H, 3.05; N, 11.85. Found: C, 42.07; H, 3.22; N, 11.65.
HR-ESI-MS (M") m/z cale. for [(PY3PZ2Me,)Zn(OTf)'], 658.0821,
found, 658.0836.

Results and discussion
Design, synthesis, and structural chemistry

With the goal of developing effective molecular catalysts for
hydrogen evolution directly from water, we were inspired by the
tightly regulated electronic communication found in mono-
nuclear metalloenzymes that enable multielectron chemistry
through the synergistic interplay of a single metal center with
pendant redox-active cofactors.’’** Seeking to transfer this
design concept to synthetic systems, we reasoned that intro-
ducing redox non-innocent functionalities into specific loca-
tions within structurally well-defined ligand motifs would allow
us to evaluate the relationship between geometric placement
and effectiveness of electron reservoirs in catalysis.
Specifically, we prepared the pentadentate ligands,
ax-PY4PZMe, (1), eq-PY4PZMe, (2), and PY3PZ2Me, (3), as well
as their ligand precursors, by standard lithiation reactions fol-
lowed by nucleophilic aromatic substitution with the desired
halogen-substituted heterocycle (Scheme 1). The targeted
introduction of redox non-innocent pyrazines in axial versus
equatorial positions allows for testing the effects of redox-active
reservoir location on catalytic hydrogen evolution activity within
a structurally homologous motif. Notably, lithiations were per-
formed with the sterically-hindered base lithium diisopropyla-
mide when deprotonating pyrazine-based reagents, as the more
nucleophilic reagent n-butyl lithium resulted in alkylation of
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the pyrazine ring.”* Moreover, successful coupling of ligand
fragments is governed by appropriate matching of nucleophilic
and electrophilic partners, and thoughtful attention to each
stepwise synthetic sequence is required. For example, several
attempts were made to react 3a with PY3MeF to form 3, including
an extended reflux in 1,4-dioxane, but no synthetically useful
conversion was observed. Thus, 3a was reacted first with 2,6-
difluoropyridine to generate 3b, which is more electrophilic than
its pyridine analogue, PY3MeF. Subsequent lithiation of 2,2'-
(ethane-1,1-diyl)dipyridine, a better nucleophile than the pyr-
azine analogue 3a, was reacted with 3b to produce 3 in 63% yield.

Facile metalation of the pentadentate ligands was achieved
at room temperature in 9:1 acetone : water mixtures using
Co(CH3CN),(OTf), or Zn(OTf), metal precursors. Crystals of the
resulting cobalt complexes, suitable for X-ray diffraction, were
grown by ether diffusion into concentrated acetone solutions.
X-ray quality crystals of the zinc complexes were grown by slow
evaporation of the reaction mixture. Solid-state structures of
each pair of metal complexes, Co and Zn, supported by ligands
1, 2, and 3 were obtained by single crystal X-ray diffraction
(Fig. 2, Table 1).

1. THF, -78 °C
1.05 eq LDA
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Slightly distorted octahedral geometries are adopted in each
of the six metal complexes in this systematic series. As expected,
the pentadentate ligands leave one open coordination site for
exogenous ligands such water or acetonitrile. The equatorial
pyrazine in the crystal structure of 2-Co is disordered over two
positions, with the dominant position accounting for 61% of
the refined structure solution. In contrast, disorder is not
observed in structures of the Co(u) and Zn(u) complex cations,
3-Co and 3-Zn, supported by the Cgsymmetric ligand,
PY3PZ2Me, (3). Disordered outer-sphere solvent and/or triflate
ions are observed in several of the structures. Additional details
can be found in the CIF files.

In Table 1, Co-O and averaged equatorial Co-N bond
distances of related complexes reveal a trend consistent with
increased metal-to-ligand backbonding in pyrazine containing
species. For example, the average Co-N., distances are
2.1415(13), 2.127(2), and 2.113(3) A in 1-Co, 2-Co, and 3-Co,
respectively. Likewise, a Co-O distance of 2.055 A was reported
for the parent complex, [(PY5Me,)Co(OH,)]>", with shorter
distances, 2.0342(12) and 2.0316(19) A, observed in [(PY4PZMe,)
Co(OH,)]*" isomers, and a progressively shorter distance,

R
>

N
Cl_N_CI N
2. | P |
N 0.5eq Z
3.A
1
N 1. DME, 0 °C N N 1. DME, 0 °C
| AN 1 eq nBulLi | AN | \] 1.05 eq LDA
Pz C|\[N\j = N/
2. N 05eq
3A 2a
2
B
N 1. THF, -78 °C N N 1. dioxane, 0 °C Nl _
[ \j/\ 1.05 eq LDA [ X | \j 1.05 eq LDA
P cl N - — — - F. N N
: & A &) OA®
2. N® 05eq 2. Z 4eq = N/
3 3a
3 3.A
3b
1. DME, 0 °C
1.05 eq LDA
~
2 TN
N~ 05eq
F. N N
DAP
= N/ 3
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Scheme 1 Synthesis of pentadentate PY5Me,-type ligands (1-3) containing pyrazine(s) at key positions in the framework.
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[(ax-PY4PZMe,)Zn(OH,)12*

[(eq-PY4PZMe,)Zn(OH,)?*

[(PY3PZ2Me,)Zn(OH,)]*

Fig. 2 Crystal structures of cations in the following salts: 1-Co, [(ax-PY4PZMe,)Co(OH,)I(OTf),; 2-Co, [(eq-PY4PZMe,)Co(OH,)(OTf),; 3-Co,
[(PY3PZ2Me,)Co(OHL)(OTH),; 1-Zn, [(ax-PY4PZMe,)Zn(OH)(OTf),; 2-Zn, [(eq-PY4PZMe,)Zn(OH,)I(OTH),; 3-Zn, [((PY3PZ2Me,)Zn(OH,)I(OTH),.
Thermal ellipsoids are drawn at the 70% probability level. Hydrogen atoms have been omitted for clarity.

Table 1 Selected bond distances of related pentadentate Co and Zn complexes

Coordination environment” (M = Co, Zn)

Complex® M-N,« M-O avg M-Neg Tilt of axial heterocycle (°)
[(PY5Me,)Co(OH,)]** (ref. 10a) 2.103 2.055 2.139 4.60
[(PY5Me,)Zn(OH,)** (ref. 10a) 2.116 2.056 2.162 11.26
[(CF5PY5Me,)Co(OH,)[** (ref. 10a) 2.132 2.050 2.129 9.88
1-Co, [(ax-PY4PZMe,)Co(OH,)*" 2.1050(13) 2.0342(12) 2.1415(13) 7.58
1-Zn, [(ax-PYAPZMe,)Zn(OH,)]** 2.147(3) 2.039(3) 2.160(4) 7.15
2-Co, [(eq-PY4PZMe,)Co(OH,)** 2.099(2) 2.0316(19) 2.127(2) 4.78
2-Zn, [(eq-PYAPZMe,)Zn(OH,)|* 2.1368(19) 2.0608(17) 2.150(2) 2.24
3-Co, [(PY3PZ2Me,)Co(OH,)** 2.094(3) 2.016(3) 2.113(3) 5.67
3-Zn, [(PY3PZ2Me,)Zn(OH,)]** 2.141(2) 2.0474(18) 2.157(2) 4.75

@ All complexes recrystallized as the triflate salt. > Bond distances are reported in angstroms (A).

2.016(3) A, found in 3-Co. Observed bond distances in this
series of cobalt complexes are similar to those of known high-
spin Co(u) (S = 3/2) systems, such as [(PY5Me,)Co(OH,)]**.*°

Electrochemistry in acetonitrile solution with glassy carbon
electrodes

Non-aqueous cyclic voltammetry experiments were conducted
in acetonitrile/0.1 M Bu,NPF, solutions for each ligand and
their corresponding metal complexes at concentrations of 1 mM
(Fig. S1-S71). Data from these experiments are summarized in
Table 2. Notably, non-aqueous cyclic voltammograms (CVs) in
CH;CN produced the same waves when using Co-aquo metal
complexes 1-Co, 2-Co, and 3-Co or complexes formed by met-
alating each ligand in acetonitrile (Fig. S5-S77), consistent with
facile solvent exchange of the axial aquo ligand with CH;CN.
CVs in CH;CN are internally referenced to the ferrocenium/
ferrocene (Fc'/Fc) couple.

This journal is © The Royal Society of Chemistry 2015

Cyclic voltammograms of each ligand are electrochemically-
silent up to potentials more negative than —2.25 V vs. Fc'/Fc
(Fig. S11). Upon metalation with Zn(u), redox events that are

Table 2 Cyclic voltammetry results (V vs. Fc*/Fc) for Co and Zn
complexes in acetonitrile/0.1 M BuyNPFg

Complex Eip (CO"™™) Epie  Epe Epse
1-Co, [(ax-PY4PZMe,)Co(OH,)[*"  0.32 —1.22 —1.40 —

1-Zn, [(ax-PYAPZMe,)Zn(OH,)* — — —~1.69 —1.90
2-Co, [(eq-PY4PZMe,)Co(OH,)[**  0.27 —1.30 —1.42 —2.04
2-Zn, [(eq-PY4PZMe,)Zn(OH,)*" — — -1.70 —1.83
3-Co, [(PY3PZ2Me,)Co(OH,)*" 0.35 -1.18 -1.25 -1.95
3-Zn, [(PY3PZ2Me,)Zn(OH,) " — — —-1.45 —1.75
[(PY5Me,)Co(CH5CN)** (ref. 10a) 0.24 —1.47 —2.36 —

[(PY5Me,)Zn(OH,)]*" — — — —

¢ Electrochemistry in CH3;CN was performed to confirm its

electrochemical silence as previously reported in CH,Cl, solution (ref.
10a).
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irreversible on the CV time-scale are observed for each complex,
consistent with ligand-based reductions (Fig. S2-S47t). Under the
same conditions, the previously studied pentapyridine analogue,
[(PY5Me,)Zn(OH,)](OTf),, displayed no redox activity over the
same potential range,'* indicating that pyrazine moieties in 1-
Zn, 2-Zn, and 3-Zn are reduced. As expected, reductions for axial
(1-Zn) and equatorial (2-Zn) isomers of [(PY4PZMe,)Zn(OH,)]-
(OTf), are similar with the first reduction occurring at —1.7 V vs.
Fc'/Fc. The first reduction for 3-Zn, [(PY3PZ2Me,)Zn(OH,)]-
(OTf),, is shifted positively by 250 mV (—1.45 V) with a second
reduction event located at —1.75 V vs. Fc'/Fc.

The cyclic voltammograms of the Co complexes have addi-
tional features that we ascribe to metal-based redox events.
Catalyst isomers 1-Co and 2-Co exhibit reversible waves at 0.32
and 0.27 V (Co(ur/m)), and irreversible reductions at —1.22 and
—1.30 V vs. Fc'/Fe, respectively (Fig. S5 and S67). Consistent
with increased metal-to-ligand backbonding, the oxidative
Co(ut/u) couple of 3-Co is shifted anodically to 0.35 V and its first
reduction is shifted to —1.18 V vs. Fc¢'/Fc (Fig. S77), which is
positive relative to the first reductions of 1-Co and 2-Co. We
tentatively assign the first reductions to metal-centered Co(u/1)
events on the basis of theoretical studies (see below); however,
experimentally, the waves are overlapping and difficult to
distinguish. Additional ligand-based reductions are seen at
more negative potentials. For 1-Co, a second peak at —1.40 V is
observed with no readily distinguishable waves at more negative
potentials. Second reductions are also apparent at —1.42 V and
—1.25 V for 2-Co and 3-Co, respectively. To verify that these
waves are not due to an equilibrium of species in solution, but
are two closely-spaced one-electron processes, square wave
voltammetry was conducted to determine the electron content
of the observed waves. These results (Fig. S5B-S7Bt) showa1: 2
ratio of integrated peaks for the well-defined Co(um/u) waves
relative to the more negative closely-spaced redox features of
each cobalt complex.

Interestingly, a third reduction is observed for each of 2-Co
(—2.04 V) and 3-Co (—1.95 V), which are both cathodic relative to
reductions of their corresponding Zn complexes, 2-Zn and 3-Zn,
and likely a consequence of forming anionic species (eqn (1)).
Density functional theory calculations suggest that the third
reduction is mainly ligand-centered (see ESIYt).

Catalytic proton reduction in acetonitrile with chloroacetic
acid

Electrocatalysis with cobalt complexes under homogeneous,
diffusion-limited conditions was conducted initially by cyclic
voltammetry with a weak acid proton source in acetonitrile
solution. Significant current enhancements, relative to the bare
glassy carbon electrode, are afforded with various amounts of
chloroacetic acid (E{ecy = —1.05 V vs. Fc¢'/Fc)’ in each catalyst
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solution. The current responses following addition of up to 20
equivalents of acid are shown for 1-Co, 2-Co, and 3-Co in Fig. 3.

Each of the cobalt complexes is a competent electrocatalyst
as verified by direct hydrogen measurements. Notably, catalysis
with 1-Co occurs at more negative potentials than its initial
reductions with an onset at ca. —1.7 V vs. Fc'/Fe. The current
profiles for catalysts with an equatorial pyrazine group,
however, display catalytic current enhancements that overlap
with the initial reductions and results in considerably lower
overpotentials for hydrogen evolution catalysis. For 2-Co, the
first reduction does not vary significantly with acid concentra-
tion, but is followed closely by a catalytic second reduction with
an onset of ca. —1.5 V. A small pre-feature, or first reduction
event, is also observed with 3-Co, followed by a steep rise in
current at ca. —1.15 V, indicative of catalysis. Fig. 3D provides a
comparison of CVs for each catalyst in the presence of 20
equivalents of chloroacetic acid.

Electrocatalytic hydrogen production was measured directly
by gas chromatography of samples obtained from the head-
space of electrochemical cells. The amount of H, generated was
quantified using a calibration curve based on an internal stan-
dard (CH,) of known volume that was injected into the head-
space of degassed, airtight electrochemical cells prior to
electrolysis (Fig. S8t). A glassy carbon rod was employed as the
working electrode during controlled potential electrolyses
(Fig. S9t) at a fixed potential of —1.5 V vs. Fc'/Fc for the
hydrogen measurements. Zinc complexes do not show proton
reduction activity at this potential. As expected from cyclic vol-
tammograms, the activity of 1-Co under these conditions with
chloroacetic acid is relatively low, but surprisingly similar to
that of 3-Co. The best catalyst from the Co series is 2-Co by a
factor of ~2. Faradaic efficiencies of all catalysts were >90% for
evolved hydrogen, verifying that virtually all of the total charged
passed was used efficiently to reduce protons.

Aqueous electrochemical studies

Cyclic voltammetry studies were also performed in aqueous
solution at physiological pH (1 M pH 7 potassium phosphate
buffer, KPBS). Notably, the Zn(u) complexes bearing the redox
non-innocent pyrazine donors do show electrochemical activity
in the potential window afforded by the glassy carbon electrode,
but they are not catalysts for the hydrogen production reaction.
This important observation highlights the fact that the redox-
active cobalt ions along with the redox-active ancillary ligands
1-3 are required for catalysis. Fig. 4 displays the CVs of Co
complexes 1-Co, 2-Co, and 3-Co at 1 mM concentrations at pH 7
under the same conditions. Oxidative waves are also observed
with E;), values of 0.34 V, 0.35 V, and 0.42 V vs. SHE, respec-
tively. We assign these waves to Co(i/u) couples, consistent with
structurally-related polypyridine Co complexes.'®***%

[(L)Co'l-(CH3CN)]2+;—> [(L)Co'-(CH;CN)] " —— (L"")Co'-(CH;CN) —— [(L*")Co'-(CH;CN)] - (1)

4962 | Chem. Sci., 2015, 6, 4954-4972
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Fig. 3 Cyclic voltammetry of catalysts (1 mM) in acetonitrile with various concentrations of chloroacetic acid (up to 20 equivalents, 20 mM). A, B,
and C. Catalysts 1-Co, 2-Co, and 3-Co, respectively. The CV in black in these three graphs is the indicated catalyst in the absence of acid. D.
Comparison of CVs for each catalyst, 1-Co (red), 2-Co (blue), and 3-Co (black), with 20 eq. of chloroacetic acid. Scan rate = 100 mV s™% 3 mm

dia. glassy carbon.

80
| ——1-Co, axial isomer
—— 2-Co, equatorial isomer
604 ——3-Co

Current / pA

. — —
0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.2

Potential / V vs SHE

Fig. 4 Aqueous cyclic voltammetry of catalysts 1-Co (red), 2-Co
(blue), and 3-Co (black) in 1 M pH 7 KPBS at glassy carbon electrode.
Catalyst concentration is 1 mM and scan rate = 100 mV s~*. Back-
ground is shown as a dotted gray line.

At reducing potentials, a clear demarcation in behavior is
observed between axial isomer 1-Co and its equatorial isomer
2-Co, as well as 3-Co which bears two pyrazine moieties in

This journal is © The Royal Society of Chemistry 2015

equatorial positions along the ligand framework. Quasi-
reversible reductions of 1-Co at E, . = —0.68 and —0.76 V are
followed by a ~250 mV separation before a catalytic wave
appears with an onset at ca. —1.0 V vs. SHE. In contrast, irre-
versible reductions of equatorial pyrazine complexes 2-Co and
3-Co are observed that coincide with catalytic hydrogen
production. Interestingly, the lag between initial reductions and
catalytic onset is not observed with 2-Co and 3-Co.

Cyclic voltammetry experiments as a function of pH were
conducted to supplement our understanding of these redox
events. Cyclic voltammograms over a pH range of 3 to 8 are
plotted for each catalyst as shown in Fig. 5. At positive poten-
tials, a reversible oxidation is observed for each catalyst that is
consistent with a Co(i)-OH/Co(11)-OH, couple. Slopes of 54, 52,
and 54 mV per pH unit are obtained from the E;,, vs. pH plots
shown in Fig. S10t and are near the expected value of 59 mV per
pH unit for a metal-centered 1H'/1e~ process. At negative
potentials, two well-separated waves are observed at low pH
values for 1-Co with a reductive peak separation of ~240 mV at
pH 3. The first reduction is quasi-reversible and has a pH
dependence of 62 mV per pH unit, while the second reduction is
irreversible and has a pH dependence of ~22 mV per pH unit
(Fig. S11t). As the pH is increased, the waves begin to coalesce
into closely-spaced, overlapping redox features. The
pH-dependence of the second reduction is scattered from

Chem. Sci,, 2015, 6, 4954-4972 | 4963
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linearity, but is qualitatively similar to previously reported water
reduction catalysts'®'® and suggests a 1H'/2e~ process. This
result may indicate that a third reduction is necessary for
initiating reactivity from 1-Co, consistent with the higher over-
potential required for catalysis following the first two redox
events. In contrast, a single irreversible, catalytic reduction is
observed across the pH range for 2-Co and 3-Co, displaying pH
dependences of 57 and 58 mV per pH unit, respectively,
consistent with a 1H'/1e™ process.

The pH-dependent cyclic voltammetry of 1-Zn (Fig. S127)
indicates that ligand-based pyrazine reduction is accompanied
by protonation, likely at its distal nitrogen. Skewed waves are
observed with a pH dependence of 60 mV per pH unit with
reductive peak potentials that are similar to the potentials of the
second reduction observed in 1-Co. On this basis, together with
the nonaqueous electrochemical results described earlier, the
closely-spaced reductions observed in 1-Co are consistent with
two 1-electron processes involving a metal-centered Co(u/i)
reduction followed by a ligand-based pyrazine reduction.

Electrocatalytic activity and stability of the cobalt complexes
during the hydrogen evolution reaction in neutral, phosphate-
buffered water was studied by controlled potential electrolysis.
A mercury pool working electrode was used to minimize the
background reaction, and two different potentials were
analyzed. At a fixed potential of —1.0 V vs. SHE, 2-Co and 3-Co
perform with nearly identical activities while far surpassing the
capability of axial isomer 1-Co (Fig. S137). The same behavior is
observed at —1.2 V vs. SHE, but with 3-Co passing a charge of
nearly 350 coulombs after 12 h and 2-Co accounting for nearly
300 C over the same timeframe. The Faradaic efficiency for

4964 | Chem. Sci., 2015, 6, 4954-4972

evolved hydrogen was monitored by gas chromatography for
catalysts 1-Co, 2-Co, and 3-Co at various time points during
electrolysis and found to be ca. 100%, which confirms that all of
the electrons transferred from the working electrode were used
to generate hydrogen (Fig. S147).

Rotating disk electrode voltammetry studies

To further probe the electrochemical signatures of this series of
catalysts, we employed rotating disk electrode voltammetry
(RDEV). The apparent n,;,, value for each catalyst was determined
to directly compare their potential-dependent catalytic activity.
The value of n,, is a measure of the rate of electron delivery from
the electrode surface to the catalyst before it diffuses away, where
the diffusion coefficient is accounted for by normalizing, inter-
nally, the electrocatalytic current density (j.) to the plateau
current density of the Co(ur)-OH/Co()-OH, couple (j,).

Results are shown in Fig. 6 for the catalyst series, 1-Co, 2-Co,
and 3-Co. The RDEV conditions and parameters employed here
are analogous to those of previous studies of hydrogen evolving
catalysts conducted in 0.1 M pH 7 phosphate buffer,**** but
0.1 M NaClO, was replaced with 0.1 M KNO; owing to poor
catalyst solubility in the former electrolyte. The top of each
panel displays the steady-state voltammograms of current
density vs. potential at a scan rate of 25 mV s~ and rotation
rates from 100 to 3600 rpm. The bottom of each panel shows the
data obtained at 400 rpm used to calculate the potential-
dependent 7, for catalysis at —0.9 V vs. SHE.

The potential-dependent activity of each catalyst is
compared in Fig. 7A. Fig. 7B displays the steady-state

This journal is © The Royal Society of Chemistry 2015
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Fig.7 A. Comparison of n,p,, vs. applied potential for catalysts 1-Co (red), 2-Co (blue), and 3-Co (black) based on steady-state voltammograms in
Fig. 6 (bottom). The vertical dashed line denotes the thermodynamic potential for water reduction at pH 7. B. Steady-state voltammogram of

catalyst 1-Co at 100 rpm, 25 mV s7%,

voltammogram for catalyst 1-Co at 100 rpm to highlight the
clean 2e” reduction that occurs, which is followed by catalysis at
more negative potentials. Apparent 72,5, values at —0.9 Vvs. SHE
are indicated in the bottom of each panel in Fig. 6 and shown
graphically in Fig. 7A. The catalytic onset for each catalyst is
consistent with the CVs shown in Fig. 4. Catalyst 1-Co has an
overpotential of ~500 mV corresponding to a catalytic onset at
ca. —0.9 V and a measured n,p;, of 2.5. In contrast, catalysts 2-Co
and 3-Co show hydrogen evolution at significantly lower over-
potentials. Indeed, n,p, values of 4.1 and 6.6 were obtained for
2-Co and 3-Co, respectively, at —0.9 V vs. SHE. We note that a

This journal is © The Royal Society of Chemistry 2015

pyrazine moiety on the equatorial ligand plane not only results
in a remarkable enhancement in catalytic activity at modest
overpotentials, but installation of a second equatorial pyrazine
extends this improvement. Levich plots of current density versus
square root of rotation rate are linear, indicating that the
catalysts are diffusional (Fig. S157).

Visible-light photoredox catalysis for generating hydrogen
from water

With electrocatalytic data in hand, photocatalytic experiments
were performed using [Ru(bpy);]Cl, as the prototypical

Chem. Sci,, 2015, 6, 4954-4972 | 4965
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molecular photosensitizer, ascorbic acid as the sacrificial elec-
tron donor, and the newly-prepared pyrazine-based cobalt
complexes as molecular hydrogen evolution catalysts. All three
components in the presence of visible light are required for
hydrogen production as shown by appropriate control exper-
iments.'” These experiments were performed in a home-built
16-well reactor where evolved H, was monitored in real-time
using pressure transducers. At the end of the experiments,
accumulated H, was quantified by GC and MS sampling of the
headspace. A thorough pH optimization study was performed
revealing pH 5.5 to be optimal for all of the catalysts investi-
gated (Fig. S167). The kinetics of hydrogen production as well as
the TONs (Fig. 8) were evaluated for each catalyst at constant
ascorbic acid/ascorbate and [Ru(bpy)s;]*" concentrations. The
equatorial isomer 2-Co was shown to exhibit a greater than two-
fold enhancement in catalytic hydrogen evolution activity with
respect to the axial isomer 1-Co. When compared with the
previously reported catalysts [(CF;PY5Me,)Co(OH,)]>" and
[(PY5Me,)Co(OH,)]**,**  the equatorial isomer 2-Co,
[(eq-PY4PZMe,)Co(OH,)]**, possesses a higher TON of ~450
(Hp/Co) wunder combinatorially optimized photocatalytic
conditions over congeners that do not possess a pendant redox
non-innocent ligand donor, consistent with the substantial
improvement observed in its electrocatalytic behavior.

In contrast with previously reported observations on poly-
pyridine systems,"” the decrease in observed hydrogen produc-
tion over longer time periods is due to partial decomposition of
both the [Ru(bpy);]** photosensitizer and 2-Co catalyst, as well
as a slight increase in pH when catalysis is performed with
ascorbate above pH 4.0, as catalysis was only restored up to 25%
of the original value when an aliquot of fresh [Ru(bpy);]** was
added to the photolysis solution after the first cycle of irradia-
tion. To this end, dynamic light scattering was used to confirm
the absence of potentially catalytic nanoparticles above 0.5 nm
in radius that could be formed by decomposition of the cobalt

4966 | Chem. Sci., 2015, 6, 4954-4972
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complexes (Fig. S17t).” In addition, the mercury poisoning test
was performed as previously described® and no change in the
hydrogen production yield was observed. The dynamic light
scattering and mercury poisoning experiments confirmed the
homogeneous nature of the photocatalytic mechanism.
Hydrogen production using ascorbate and Ru(bpy);>" occurs via
the reductive quenching mechanism as previously reported.*

We speculate that the decrease in activity might be attributed
to the competitive binding of ascorbate to the cobalt center,
since pyrazine is a weaker donor than pyridine. Indeed, anation
by acetate binding has been shown to occur in the parent
[(PY5Me,)Co(CH;CN)]** during electrocatalytic H, production
in acetonitrile and acetic acid.'® Once the ascorbate is bound to
the metal center, we anticipate the reduction for cobalt to
become more negative and subsequently reduce the catalytic
activity of the catalyst. While ascorbate represents a highly
water-soluble reductive quencher of the [Ru(bpy);]*" excited
state that is able to operate at a wide variety of pH conditions,
we are currently working on finding alternative photosensitizers
and quenchers to pair with the present cobalt catalysts to
increase longer-term hydrogen generation.

Since the amount of hydrogen produced in the first
30 minutes of the photocatalytic experiments (Fig. 8) does not
exceed 10 pmol H,, the pressure sensors utilized do not permit
the precise measurement of the initial quantum yield of
hydrogen production. Instead, the quantum yield of hydrogen
production was measured using a He-Cd Laser as a radiation
source at a wavelength of 442 nm. Solutions were irradiated
through standard 1 cm path length cuvettes that possess a
significantly smaller headspace volume than the photoreactors
used in the high-throughput setup. The headspace was then
sampled using gas chromatography via manual injections. Each
catalyst was tested at 3 different power densities (30 mW,
45 mW, and 68 mW) for 30 minutes and the average is reported
here. It was found that the quantum yield of hydrogen
production”™ is 0.26 £+ 0.08% for 1-Co, 0.49 + 0.02% for 2-Co
and 0.10 % 0.06% for 3-Co in solutions containing 2.0 x 10> M
Co(u) catalyst, 3.3 x 10~* M [Ru(bpy);]**, and 0.3 M H,A/HA™ at
pH 5.5. These quantum yields are one order of magnitude
smaller than the pentadentate and tetradentate cobalt poly-
pyridine catalysts.'”*°

Despite the low overpotential and high stability observed in
electrocatalytic H, production with 3-Co, photocatalysis suffers
markedly upon installation of a second equatorial pyrazine.
Indeed, the data show that initial rates of H, evolution by 3-Co
are higher at early time points compared to 2-Co and 1-Co. This
observation is consistent with electrochemical CV activity
measurements, where the onset of catalysis occurs at potentials
near the initial metal reduction couple. Anation and lower
overall stability offer a potential explanation for the observed
behavior as ascorbate binding to 3-Co is likely intensified with
two relatively weak pyrazine donors.

Electronic structure calculations

To supplement the experimental findings from electrocatalytic
and photocatalytic studies, density functional theory (DFT,

This journal is © The Royal Society of Chemistry 2015
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Table 3 Calculated redox potentials (V vs. Fc*/Fc) for the Co?" complexes (S = 3/2) and their one- (S = 1) and two-electron reduced species (S =

1/2 and 3/2) in solution (acetonitrile via C-PCM approach)

Epic(S=1) Ep e (S =1/2 and 3/2)
Complex exptl caled exptl caled caled
1'-Co, [(ax-PY4PZMe,)Co(CH;CN)[** —1.22 —~1.28 —~1.40 -1.39 -1.38
2'-Co, [(eq-PY4PZMe,)Co(CH,CN)** —-1.30 —-1.34 —1.42 —1.42 —1.46
3'-Co, [(PY3PZ2Me,)Co(CH,CN)** -1.18 -1.18° -1.25 —-1.25° —1.25°

“ This redox potential was used as reference in the isodesmic reactions, so it agrees by construction, and all other reduction potentials are calculated

relative to this value.

B3LYP-D2) calculations were performed on all three Co** cata-
lysts and their one- and two-electron reduced species. The key
structural features of the quartet Co>" species 1-Co, 2-Co, and
3-Co are reproduced by DFT calculations, in particular the
Co-N,, bond length (calc. 2.109 A, exp. 2.1050(13) in 1-Co; calc.
2.108 A, exp. 2.099(2) in 2-Co; calc. 2.111 A, exp. 2.094(3) in
3-Co). The main discrepancy is found in the calculated Co-O
bond lengths, which are overestimated by 0.15, 0.16 and 0.17 A,
respectively. Additional test calculations on the extent to which
the results are functional-dependent show similar trends
(Tables S1-S31). However, crystal packing and hydrogen
bonded outer-sphere water molecules in the crystal lattice
produce significant changes to the Co-O bond distances. For
example, four unique positions are observed in the unit cell of
Co(u)-OH, complex 3-Co with Co-O bond distances of 1.958(4),
2.042(3), 2.016(3), and 2.049(3). Only one unique position for
the cation is found in crystals of 1-Co and 2-Co, precluding
experimental observation of the variability in Co-O bond
distances due to packing effects for these species.

In order to interpret the electrochemical data in acetonitrile
and provide further support of our assignments, we calculated
the redox couples associated with the reduction of all three Co**
complexes (S = 3/2) and their one- (S = 1) and two-electron (S =
3/2 and 3/2) reduced species. Experimentally, the non-aqueous
cyclic voltammograms (CVs) in CH3CN are the same when
using metal-aquo complexes or complexes formed by metal-
ating each ligand in acetonitrile, therefore the Co-(CH;CN)
complexes were employed in the calculations. In this case, the
calculated redox potentials are in good agreement with the ones
measured experimentally (Table 3). We also considered disso-
ciation of the acetonitrile molecule after two-electron reduc-
tions, however, the redox potentials for the six-coordinate
species are in better agreement (Table S77).

The one-electron reduced triplet species (1'-Co to 1-Co + e,
2/-Co to 2'-Co + e, and 3'-Co to 3’-Co + e~ ) was calculated to
have the lowest free energy in acetonitrile for all three complexes
(Table S5t). The canonical molecular orbitals, and the Lowdin
population analysis™ suggest that reduction occurs at the metal-
centered (Fig. S24-S26t). Interestingly, calculations suggest that
the metal character of the highest occupied molecular orbital
(HOMO) in 2'-Co + e~ (0.78) and 3'-Co + e~ (0.77) is dominant
compared to 1-Co + e~ (0.68, Fig. 9). The localized orbital
bonding analysis (LOBA)™® using the Edmiston-Ruedenberg
localized orbitals (Fig. S21-5231)”” as well as the Mulliken spin

This journal is © The Royal Society of Chemistry 2015

population (Fig. S51-S531) confirm that the one electron in
1-Co + e is shared between the cobalt center and the pyrazine
ligand. Dissociation of the solvent molecule after the first
reduction was also considered. In this case, the five-coordinate
complexes were found to be slightly higher in energy in solu-
tion (AGgpsLypcpem ~ +1.0 keal morl; AGgsLyp-D2/C-PCM
~ +8.0 kcal mol "), which may suggest that the Co'* complexes
remain six-coordinate in solution.

Following this result, we performed calculations on the six-
coordinate Co'" complexes and their one-electron reduced
species (1'-Co +2e ™, 2'-Co + 2e” and 3'-Co + 2e™, respectively). In
this case, the cobalt complexes can exist in both doublet and
quartet states (Table S61). DFT calculations suggest that these
states are degenerate, however, the spin contamination for the
doublet state is close to 2, which implies a mixing between the
doublet and quartet states ({S*) ~ 3.9 for the quartet state). The
canonical molecular orbitals (Fig. S33-S38%) and the Mulliken
spin population (Fig. S51-S537) for all three cobalt complexes
show that reduction occurs at the pyrazine ligand for both
doublet and quartet states to yield a Co'L'~ species. LOBA
calculations also imply that the cobalt center remains in the +1

(a) 1'-Cote” (b) 2'-Co+te” (¢) 3'-Co+te
Co: 0.68 Co: 0.78 Co: 0.77
Co: 0.71 Co: 0.81 Co: 0.79

Fig. 9 lIsosurface (0.07 au) plots of the canonical highest occupied
molecular orbitals (HOMOs, top) and B-spin localized orbitals (bottom)
for 1’-Co + e, 2-Co + e and 3-Co + e~ (S = 1). The Lowdin pop-
ulation analyses are given for cobalt.
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oxidation state (Fig. S27-S3271), which confirms that the extra
electron goes onto the ligand. We also considered dissociation
of the acetonitrile molecule for 1’-Co + 2e ™, 2’-Co + 2e ", and 3'-
Co + 2e . Calculations indicate that formation of a five-
coordinate species can be competitive or lower in energy than
the six-coordinate complexes. The precise numbers are some-
what functional-dependent (Table S6t). With B3LYP-D2 (S =
3/2), dissociation of the acetonitrile molecule from 1'-Co + 2e~,
2/-Co + 2e¢ and 3'-Co + 2e™ is found to be 4.7, 3.5 and 3.8 kcal
mol ™" higher in energy, respectively, than the six coordinate
species, although it is preferred with B3LYP. These observations
suggest that a competition between five- and six-coordinate
species may exist in solution and play a role in catalysis.
Again, DFT calculations on the five-coordinate cobalt species
show that reduction occurs at the pyrazine ligand for all three
cobalt species (Fig. S39-S537). It is worth mentioning that the
lowest unoccupied molecular orbitals (LUMOSs) for all three-
cobalt complexes (before or after dissociation of the solvent
molecule) are ligand-centered, which implies that the three-
electron reduced species will give a Co'L?>~ complex.

Note that in the present study, dissociation of one equatorial
ligand (pyrazine or pyridine) was not considered. The full
examination of these steps is beyond the scope of this study and
a more comprehensive follow-up computational study is
underway.

Concluding remarks

Inspired by mononuclear metalloenzymes that operate in
concert with precisely positioned redox-active cofactors to
orchestrate multielectron reactions, we have presented the
synthesis and evaluation of a series of mononuclear cobalt
catalysts for proton reduction bearing redox-active pyrazine
reservoirs at well-defined positions within a structurally
homologous motif. Notably, these systems operate under
protein-compatible conditions in water at neutral, physiological
pH. We also prepared and characterized the isostructural
analogs coordinated by redox-inactive zinc(u) to disentangle the
contributions of ligand-based and metal-based redox chemistry
of these systems. The cobalt complexes with an equatorial pyr-
azine functionality are competent molecular electrocatalysts
under soluble, diffusion-limited conditions using a glassy
carbon electrode and in aqueous media with a Hg pool elec-
trode. No sign of deactivation is observed in pH 7 phosphate
buffer, and the Faradaic efficiency has been quantified to
~100% for hydrogen production for the series of cobalt cata-
lysts. More importantly, they can function as molecular photo-
catalysts for hydrogen production from aqueous protons under
visible light irradiation when combined with a molecular
photosensitizer [Ru(bpy)s]*".

In contrast to Zn(u) complexes of the parent PY5Me, ligand
and derivatives containing peripheral substitutions on the
pyridine ring, which are electrochemically silent in non-
aqueous cyclic voltammetry studies,' the redox non-innocent
nature of the pyrazine donors is clearly observed in a family
of complexes, 1-Zn, 2-Zn, and 3-Zn, that are isostructural but
vary in the location of the redox-active pyrazine reservoir(s).
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Moreover, from pH-dependent cyclic voltammetry measure-
ments on these complexes containing redox-inactive Zn(u)
centers, we have shown that reduction of pyrazine moieties in
the ligand framework is concomitant with protonation, likely at
the distal pyrazine nitrogen. Additionally, square wave voltam-
metry of the cobalt complexes was used to authenticate the
assignments of a closely-spaced Co(u/1) reduction and a ligand-
based reduction for a combined two electrons in comparison to
the one-electron peak of the Co(/u) couple.

The position of the redox non-innocent pyrazine group(s) is
critical to catalyst performance, as evidenced by comparison of
the axial and equatorial isomers of Co(u) catalysts for hydrogen
production containing a single pyrazine substitution in a
PY5Me,-type scaffold. Indeed, the equatorial isomer 2-Co is
superior to the axial isomer 1-Co for hydrogen production from
protons in both organic and aqueous solution. Electronic
structure differences resulting from positioning of the redox
non-innocent pyrazine cofactor relative to the catalytic cobalt
center play an important role in this regard. Indeed, the first
reductions of 1-Co and 2-Co occur at similar potentials (ca.
—0.7 V vs. SHE), precluding a difference in reactivity based
strictly on a thermodynamic driving force argument. Interest-
ingly, DFT calculations suggest that the one-electron reduced
species 2’-Co + e~ and 3/-Co + e~ have significantly more metal
character than 1'-Co + e™.

The two-electron reduced species suggest a competition
between five- and six-coordinate species, which may play a role
in catalysis. For instance, we have previously shown that Co(u)
complexes supported by tetradentate polypyridine ligands yield
more active photocatalytic compositions than similar catalysts
with pentadentate ligands and still retain high catalyst
stability.”® In particular, complexes with tetradentate ligands
that promote cis open coordination sites appear to be more
active for hydrogen evolution than catalysts with trans open
sites.’**”® Given this structure-activity relationship and the
favorable energetics for ligand dissociation upon reduction of
2-Co, we hypothesize that two open cis coordination sites are
available for catalysis via an electron transfer-induced ligand
dissociation mechanism. Electro- and photocatalytic measure-
ments are consistent with this scenario in which the equatorial
isomer far outperforms the axial isomer. In contrast, dissocia-
tion of an equatorial pyridine does not appear to be readily
accessible for 1-Co, and thus the axial redox non-innocent pyr-
azine acts as an unproductive electron sink. In this case,
protonation to form the key cobalt-hydride intermediate,
postulated in structurally similar cobalt polypyridine cata-
lysts,'>**'” may be the rate-limiting step for 1-Co. Additionally,
the 1H'/2e” pH dependence of the second reduction of 1-Co
suggests a third reduction may be necessary to initiate catalysis.
On the other hand, a single, multielectron catalytic feature with
pH dependence consistent with 1H'/1e” events is observed for
both 2-Co and 3-Co. Catalysis begins at this initial redox event
rather than at the more reducing potentials required for 1-Co.
Lower catalytic overpotentials for 2-Co and 3-Co are indeed
verified by controlled potential electrolysis and H,
quantification.

This journal is © The Royal Society of Chemistry 2015
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Finally, in addition to these electronic structure consider-
ations, we also note that catalyst stability, particularly in
aqueous media, is an important factor under both electro-
catalysis and photocatalysis. This situation is illustrated by
3-Co, which possesses two relatively weak pyrazine donors. In
this case, electron transfer-induced ligand dissociation may
lead to enhanced deactivation by anation. While 3-Co showed
high stability in aqueous phosphate buffer, its activity under
photocatalytic conditions (as well as in acetonitrile with added
chloroacetic acid) is diminished over time. As such, the
comparably low overpotential of 2-Co, coupled with its high
activity and superior stability, identifies it as the best catalyst of
this series. To our knowledge, this is the first example of
isomers involving redox-active ligands displaying significantly
different catalyst reactivities.

In closing, the collective data on this series of cobalt
complexes supported by structurally homologous pentadentate
ligands show marked differences in catalytic hydrogen
production from water by varying the arrangement of a redox-
active pyrazine ligand relative to a single metal site. This
synthetic system has conceptual parallels to mononuclear
metalloenzymes, such as galactose oxidase, copper amine
oxidase, and [Fe]-hydrogenase, that combine a single metal
center and pendant redox-active organic cofactor with strict
conformational demands, and reveals the fine electronic
balance between metal center and ligand in dictating reactivity
and function. The utility of isostructural control complexes with
redox-inactive metal ions, such as Zn(u), has aided in disen-
tangling the contributions from metal-centered and ligand-
centered redox processes in such systems. These results high-
light the importance of electronic structure considerations
regarding the placement of redox non-innocent ligands in
catalyst design, which has broader implications for the use of
electron-hole  reservoirs for multielectron chemical
transformations.
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