Issue 24, 2024

π-Distorted charge transfer chromophores and their materials chemistry in organic photovoltaics

Abstract

This review aimed to discuss the emergence of tetracyanobutadiene (TCBD) and dicyanoquinodimethane (DCNQ)-functionalized push–pull chromophores as key active layer materials in organic solar cells (OSCs). Although TCBD/DCNQ-based π-materials have been extensively applied in functional organic devices, their scope in OSCs is largely limited by their non-planar molecular geometry. This inherent structural feature is a barrier for effective charge carrier mobility, which considerably diminishes the overall photovoltaic efficiency. Alternatively, other appealing properties associated with TCBD/DCNQ-based chromophores have widened the space for the further screening of their OSC potential. To date, TCBD and DCNQ have been proven to be promising functional entities for the construction of tailor-made π-semiconductors for OSC devices. Through rational molecular design, many structural cores have been appended to TCBD and DCNQ units to satisfy the requirements of OSC application. These strategies also allow for the modulation of π-orbital properties, which not only determine their role as either a donor (p-type) or acceptor (n-type) but also affect their photovoltaic performance. Therefore, this review comprehensively discusses the various TCBD/DCNQ-based π-semiconductors investigated for OSCs with deeper insights into the fundamental understanding of their opto-electrochemical properties contributing to the device performance. Additionally, we have highlighted the impact of processing methods on power conversion efficiencies.

Graphical abstract: π-Distorted charge transfer chromophores and their materials chemistry in organic photovoltaics

Article information

Article type
Review Article
Submitted
06 Apr 2024
Accepted
19 May 2024
First published
05 Jun 2024

J. Mater. Chem. C, 2024,12, 8611-8646

π-Distorted charge transfer chromophores and their materials chemistry in organic photovoltaics

A. A. Raheem and C. Praveen, J. Mater. Chem. C, 2024, 12, 8611 DOI: 10.1039/D4TC01424C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements