Tribo-electrical evaluation of conductive fluid film of Ti3C2Tz MXene-containing lubricant
Abstract
Multi-Layer (ML)-Ti3C2Tz MXene is being incorporated in lubricants to enhance their tribo-electrical performance. To date, a comprehensive understanding of the dynamic tribo-electrical behavior of lubricants containing nanomaterial enhancers is lacking. This study investigates a novel approach based on electrochemical impendence to analyze the tribo-electrical characteristics of light mineral oil with varying concentrations of (ML)-Ti3C2Tz MXene as additive. We have modified a commercially available tribometer to integrate the impedance analyzer, allowing simultaneous evaluation of electrical performance during dynamic contact between two steel surfaces under sliding condition. This approach enables the measurement of friction, tracking impedance values, assessment of contact area, and the determination of oil film thickness. Our findings reveal that the addition of 0.06 wt% of ML-Ti3C2Tz MXene reduces friction for up to 60% compared to pure mineral oil. Furthermore, the electrical conductivity can be increased by adding MXene in the mineral Oil. Lubricants have ML-Ti3C2Tz MXene additives possess exceptional tribological and electrical characteristics, facilitating a rapid and conductive lubricating film formation to address current needs of lubrication in electrical vehicles (EVs). This enhances efficiency, extends component lifespan, and mitigates electrical-induced damages with reduced failure rates in EVs.
- This article is part of the themed collection: Surface Engineering of Transition Metal-based 2D Layered Materials