Enzyme-mimicking redox-active vitamin B12 functionalized MWCNT catalyst for nearly 100% faradaic efficiency in electrochemical CO2 reduction

Abstract

Due to the detrimental effects of CO2 on the atmosphere, including climate change, the development of environmentally friendly electrocatalysts for CO2 reduction is crucial for mitigation. Inspired by carbon monoxide dehydrogenase (CODH) enzymes, where an active centre is surrounded by a protein scaffold, this work introduces a biomimetic system featuring a vitamin B12 cluster protected by a matrix of multi-walled carbon nanotubes (MWCNTs). Unlike literature-based vitamin B12 systems with no redox activity, we have developed multi-walled nanotubes (MWCNTs) functionalized with vitamin B12 (MWCNT@B12) as a highly redox-active system and explored it for electrocatalytic CO2 reduction reaction at room temperature in an aqueous medium. The presence of vitamin B12 in the matrix was confirmed through a series of characterizations by employing FTIR, Raman spectroscopy, FESEM, EDAX, ultrapressure liquid chromatography (UPLC), scanning electrochemical microscopy (SECM) and cyclic voltammetry. This new electrocatalyst demonstrates high faradaic efficiency (∼100%), low overpotential (ηCO2 = 242 mV), and a significant current density (43.5 mA cm−2) for the electrocatalytic conversion of CO2 to CO in a 0.5 M NaHCO3 solution. In situ SECM reveals that clusters of vitamin B12 embedded on the modified electrode are the active sites for the overall electrocatalytic reaction. Compared to previously reported heterogeneous molecular catalyst electrodes, this system exhibits a lower peak-reduction potential of 100–600 mV and current densities 2–40 times higher for the CO2 reduction reaction. Furthermore, vitamin B12 is a naturally occurring, non-toxic redox mediator. Therefore, the B12-modified electrode presented herein is a promising development for future green CO2 reduction applications.

Graphical abstract: Enzyme-mimicking redox-active vitamin B12 functionalized MWCNT catalyst for nearly 100% faradaic efficiency in electrochemical CO2 reduction

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
15 Jun 2024
Accepted
08 Sep 2024
First published
09 Sep 2024

J. Mater. Chem. A, 2024, Advance Article

Enzyme-mimicking redox-active vitamin B12 functionalized MWCNT catalyst for nearly 100% faradaic efficiency in electrochemical CO2 reduction

Y. Yesudas K., M. Balamurugan, K. T. Nam, B. Gopal and A. Senthil Kumar, J. Mater. Chem. A, 2024, Advance Article , DOI: 10.1039/D4TA04145C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements