Issue 31, 2023

Prussian blue nanozymes: progress, challenges, and opportunities

Abstract

Prussian Blue Nanozymes (PBNZs) have emerged as highly efficient agents for reactive oxygen species (ROS) elimination, owing to their multiple enzyme-like properties encompassing catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activities. As a functional nanomaterial mimicking enzyme, PBNZs not only surmount the limitations of natural enzymes, such as instability and high manufacturing costs, but also exhibit superior stability, tunable activity, low storage expenses, and remarkable reusability. Consequently, PBNZs have gained significant attention in diverse biomedical applications, including disease diagnosis and therapy. Over the past decade, propelled by advancements in catalysis science, biotechnology, computational science, and nanotechnology, PBNZs have witnessed remarkable progress in the exploration of their enzymatic activities, elucidation of catalytic mechanisms, and wide-ranging applications. This comprehensive review aims to provide a systematic overview of the discovery and catalytic mechanisms of PBNZ, along with the strategies employed to modulate their multiple enzyme-like activities. Furthermore, we extensively survey the recent advancements in utilizing PBNZs for scavenging ROS in various biomedical applications. Lastly, we analyze the existing challenges of translating PBNZs into therapeutic agents for clinical use and outline future research directions in this field. By presenting a comprehensive synopsis of the current state of knowledge, this review seeks to contribute to a deeper understanding of the immense potential of PBNZs as an innovative therapeutic agent in biomedicine.

Graphical abstract: Prussian blue nanozymes: progress, challenges, and opportunities

Article information

Article type
Review Article
Submitted
14 Apr 2023
Accepted
12 Jul 2023
First published
18 Jul 2023

Nanoscale, 2023,15, 12818-12839

Prussian blue nanozymes: progress, challenges, and opportunities

H. He, M. Long, Y. Duan and N. Gu, Nanoscale, 2023, 15, 12818 DOI: 10.1039/D3NR01741A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements